iproskurina
commited on
Commit
•
02a3f91
1
Parent(s):
3760fab
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: bigscience/bloom-3b
|
3 |
+
inference: false
|
4 |
+
model_creator: bigscience
|
5 |
+
model_name: bloom-3b
|
6 |
+
model_type: bloom
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
quantized_by: iproskurina
|
9 |
+
tags:
|
10 |
+
- pretrained
|
11 |
+
license: bigscience-bloom-rail-1.0
|
12 |
+
language:
|
13 |
+
- ak
|
14 |
+
- ar
|
15 |
+
- as
|
16 |
+
- bm
|
17 |
+
- bn
|
18 |
+
- ca
|
19 |
+
- code
|
20 |
+
- en
|
21 |
+
- es
|
22 |
+
- eu
|
23 |
+
- fon
|
24 |
+
- fr
|
25 |
+
- gu
|
26 |
+
- hi
|
27 |
+
- id
|
28 |
+
- ig
|
29 |
+
- ki
|
30 |
+
- kn
|
31 |
+
- lg
|
32 |
+
- ln
|
33 |
+
- ml
|
34 |
+
- mr
|
35 |
+
- ne
|
36 |
+
- nso
|
37 |
+
- ny
|
38 |
+
- or
|
39 |
+
- pa
|
40 |
+
- pt
|
41 |
+
- rn
|
42 |
+
- rw
|
43 |
+
- sn
|
44 |
+
- st
|
45 |
+
- sw
|
46 |
+
- ta
|
47 |
+
- te
|
48 |
+
- tn
|
49 |
+
- ts
|
50 |
+
- tum
|
51 |
+
- tw
|
52 |
+
- ur
|
53 |
+
- vi
|
54 |
+
- wo
|
55 |
+
- xh
|
56 |
+
- yo
|
57 |
+
- zh
|
58 |
+
- zhs
|
59 |
+
- zht
|
60 |
+
- zu
|
61 |
+
datasets:
|
62 |
+
- c4
|
63 |
+
---
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
# 🌸 BLOOM 3B - GPTQ
|
68 |
+
- Model creator: [BigScience](https://huggingface.co/bigscience)
|
69 |
+
- Original model: [BLOOM 3B](https://huggingface.co/bigscience/bloom-3b)
|
70 |
+
|
71 |
+
The model published in this repo was quantized to 4bit using [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ).
|
72 |
+
|
73 |
+
**Quantization details**
|
74 |
+
|
75 |
+
**All quantization parameters were taken from [GPTQ paper](https://arxiv.org/abs/2210.17323).**
|
76 |
+
|
77 |
+
GPTQ calibration data consisted of 128 random 2048 token segments from the [C4 dataset](https://huggingface.co/datasets/c4).
|
78 |
+
|
79 |
+
The grouping size used for quantization is equal to 128.
|
80 |
+
|
81 |
+
## How to use this GPTQ model from Python code
|
82 |
+
|
83 |
+
### Install the necessary packages
|
84 |
+
|
85 |
+
```shell
|
86 |
+
pip install accelerate==0.26.1 datasets==2.16.1 dill==0.3.7 gekko==1.0.6 multiprocess==0.70.15 peft==0.7.1 rouge==1.0.1 sentencepiece==0.1.99
|
87 |
+
git clone https://github.com/upunaprosk/AutoGPTQ
|
88 |
+
cd AutoGPTQ
|
89 |
+
pip install -v .
|
90 |
+
```
|
91 |
+
Recommended transformers version: 4.35.2.
|
92 |
+
|
93 |
+
### You can then use the following code
|
94 |
+
|
95 |
+
```python
|
96 |
+
|
97 |
+
from transformers import AutoTokenizer, TextGenerationPipeline,AutoModelForCausalLM
|
98 |
+
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
99 |
+
pretrained_model_dir = "iproskurina/bloom-3b-gptq-4bit"
|
100 |
+
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
|
101 |
+
model = AutoGPTQForCausalLM.from_quantized(pretrained_model_dir, device="cuda:0", model_basename="model")
|
102 |
+
pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer)
|
103 |
+
print(pipeline("auto-gptq is")[0]["generated_text"])
|
104 |
+
```
|