File size: 2,166 Bytes
71950cb 8579894 71950cb 6ac9db2 71950cb 8579894 71950cb 8579894 71950cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
base_model: dandelin/vilt-b32-mlm
tags:
- generated_from_trainer
model-index:
- name: vilt_finetuned_200
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vilt_finetuned_200
This model is a fine-tuned version of [dandelin/vilt-b32-mlm](https://huggingface.co./dandelin/vilt-b32-mlm) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.3306
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 363.9675 | 0.16 | 100 | 26.1215 |
| 11.4975 | 0.32 | 200 | 7.2332 |
| 6.1909 | 0.48 | 300 | 5.9332 |
| 5.2134 | 0.64 | 400 | 5.5186 |
| 5.0189 | 0.8 | 500 | 5.3268 |
| 4.7551 | 0.96 | 600 | 5.0921 |
| 4.5394 | 1.12 | 700 | 4.9538 |
| 4.3441 | 1.28 | 800 | 4.8967 |
| 4.1436 | 1.44 | 900 | 4.7419 |
| 4.1847 | 1.6 | 1000 | 4.6581 |
| 4.0116 | 1.76 | 1100 | 4.5915 |
| 3.918 | 1.92 | 1200 | 4.5202 |
| 3.8251 | 2.08 | 1300 | 4.4634 |
| 3.7981 | 2.24 | 1400 | 4.4169 |
| 3.7108 | 2.4 | 1500 | 4.3954 |
| 3.5706 | 2.56 | 1600 | 4.3626 |
| 3.5559 | 2.72 | 1700 | 4.3374 |
| 3.6951 | 2.88 | 1800 | 4.3306 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
|