File size: 39,850 Bytes
6742f2e
 
8955cb2
6742f2e
5e4eefa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc29aeb
5e4eefa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
011ff6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e4eefa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b3bebb
5e4eefa
 
 
 
 
 
 
 
 
 
 
 
 
 
4b3bebb
5e4eefa
 
 
 
 
 
4e13d8e
 
4b3bebb
5e4eefa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e13d8e
 
4b3bebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e13d8e
5e4eefa
 
32ab132
5e4eefa
 
32ab132
5e4eefa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b3bebb
5e4eefa
 
 
 
 
 
 
 
 
 
 
4b3bebb
5e4eefa
 
 
 
 
 
4e13d8e
 
4b3bebb
5e4eefa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e13d8e
 
4b3bebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e13d8e
5e4eefa
 
32ab132
 
5e4eefa
32ab132
5e4eefa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e13d8e
5e4eefa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e13d8e
5e4eefa
 
 
 
 
 
 
011ff6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e4eefa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b3bebb
5e4eefa
 
 
 
 
 
 
 
 
 
 
 
 
 
4b3bebb
5e4eefa
 
 
 
 
 
4e13d8e
 
4b3bebb
5e4eefa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e13d8e
 
4b3bebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e13d8e
5e4eefa
4e13d8e
32ab132
5e4eefa
32ab132
 
5e4eefa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b3bebb
5e4eefa
 
 
 
 
 
 
 
 
 
 
4b3bebb
5e4eefa
 
 
 
 
 
4e13d8e
 
4b3bebb
5e4eefa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e13d8e
 
4b3bebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e13d8e
5e4eefa
 
32ab132
5e4eefa
32ab132
 
5e4eefa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e13d8e
5e4eefa
 
 
 
 
 
 
 
 
 
 
 
8955cb2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
---
license: apache-2.0
pipeline_tag: text-generation
---
# InternLM 



<div align="center">
<img src="https://github.com/InternLM/InternLM/assets/22529082/b9788105-8892-4398-8b47-b513a292378e" width="200"/>

  <div>&nbsp;</div>
  <div align="center">
    <b><font size="5">InternLM</font></b>
    <sup>
      <a href="https://internlm.intern-ai.org.cn/">
        <i><font size="4">HOT</font></i>
      </a>
    </sup>
    <div>&nbsp;</div>
  </div>


[![evaluation](https://github.com/InternLM/InternLM/assets/22529082/f80a2a58-5ddf-471a-8da4-32ab65c8fd3b)](https://github.com/internLM/OpenCompass/)

[💻Github Repo](https://github.com/InternLM/InternLM) • [🤗Demo](https://huggingface.co./spaces/internlm/internlm3-8b-instruct) • [🤔Reporting Issues](https://github.com/InternLM/InternLM/issues/new) • [📜Technical Report](https://arxiv.org/abs/2403.17297)

</div>

<p align="center">
    👋 join us on <a href="https://discord.gg/xa29JuW87d" target="_blank">Discord</a> and <a href="https://github.com/InternLM/InternLM/assets/25839884/a6aad896-7232-4220-ac84-9e070c2633ce" target="_blank">WeChat</a>
</p>



## Introduction 

InternLM3 has open-sourced an 8-billion parameter instruction model, InternLM3-8B-Instruct, designed for general-purpose usage and advanced reasoning. This model has the following characteristics:

- **Enhanced performance at reduced cost**: 
State-of-the-art performance on reasoning and knowledge-intensive tasks surpass models like Llama3.1-8B and Qwen2.5-7B. Remarkably, InternLM3 is trained on only 4 trillion high-quality tokens, saving more than 75% of the training cost compared to other LLMs of similar scale. 
- **Deep thinking capability**:
InternLM3 supports both the deep thinking mode for solving complicated reasoning tasks via the long chain-of-thought and the normal response mode for fluent user interactions. 

## InternLM3-8B-Instruct

### Performance Evaluation

We conducted a comprehensive evaluation of InternLM using the open-source evaluation tool [OpenCompass](https://github.com/internLM/OpenCompass/). The evaluation covered five dimensions of capabilities: disciplinary competence, language competence, knowledge competence, inference competence, and comprehension competence. Here are some of the evaluation results, and you can visit the [OpenCompass leaderboard](https://rank.opencompass.org.cn) for more evaluation results.

|              | Benchmark                       | InternLM3-8B-Instruct | Qwen2.5-7B-Instruct | Llama3.1-8B-Instruct | GPT-4o-mini(closed source) |
| ------------ | ------------------------------- | --------------------- | ------------------- | -------------------- | -------------------------- |
| General      | CMMLU(0-shot)                   | **83.1**              | 75.8                | 53.9                 | 66.0                       |
|              | MMLU(0-shot)                    | 76.6                  | **76.8**            | 71.8                 | 82.7                       |
|              | MMLU-Pro(0-shot)                | **57.6**              | 56.2                | 48.1                 | 64.1                       |
| Reasoning    | GPQA-Diamond(0-shot)            | **37.4**              | 33.3                | 24.2                 | 42.9                       |
|              | DROP(0-shot)                    | **83.1**              | 80.4                | 81.6                 | 85.2                       |
|              | HellaSwag(10-shot)              | **91.2**              | 85.3                | 76.7                 | 89.5                       |
|              | KOR-Bench(0-shot)               | **56.4**              | 44.6                | 47.7                 | 58.2                       |
| MATH         | MATH-500(0-shot)                | **83.0***             | 72.4                | 48.4                 | 74.0                       |
|              | AIME2024(0-shot)                | **20.0***             | 16.7                | 6.7                  | 13.3                       |
| Coding       | LiveCodeBench(2407-2409 Pass@1) | **17.8**              | 16.8                | 12.9                 | 21.8                       |
|              | HumanEval(Pass@1)               | 82.3                  | **85.4**            | 72.0                 | 86.6                       |
| Instrunction | IFEval(Prompt-Strict)           | **79.3**              | 71.7                | 75.2                 | 79.7                       |
| Long Context | RULER(4-128K Average)           | 87.9                  | 81.4                | **88.5**             | 90.7                       |
| Chat         | AlpacaEval 2.0(LC WinRate)      | **51.1**              | 30.3                | 25.0                 | 50.7                       |
|              | WildBench(Raw Score)            | **33.1**              | 23.3                | 1.5                  | 40.3                       |
|              | MT-Bench-101(Score 1-10)        | **8.59**              | 8.49                | 8.37                 | 8.87                       |

- Values marked in bold indicate the **highest** in open source models
- The evaluation results were obtained from [OpenCompass](https://github.com/internLM/OpenCompass/) (some data marked with *, which means evaluating with Thinking Mode), and evaluation configuration can be found in the configuration files provided by [OpenCompass](https://github.com/internLM/OpenCompass/). 
- The evaluation data may have numerical differences due to the version iteration of [OpenCompass](https://github.com/internLM/OpenCompass/), so please refer to the latest evaluation results of [OpenCompass](https://github.com/internLM/OpenCompass/).

**Limitations:** Although we have made efforts to ensure the safety of the model during the training process and to encourage the model to generate text that complies with ethical and legal requirements, the model may still produce unexpected outputs due to its size and probabilistic generation paradigm. For example, the generated responses may contain biases, discrimination, or other harmful content. Please do not propagate such content. We are not responsible for any consequences resulting from the dissemination of harmful information.
### Requirements
```python
transformers >= 4.48
```


### Conversation Mode

#### Transformers inference

To load the InternLM3 8B Instruct model using Transformers, use the following code:

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_dir = "internlm/internlm3-8b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
  # pip install -U bitsandbytes
  # 8-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_8bit=True)
  # 4-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_4bit=True)
model = model.eval()

system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""
messages = [
    {"role": "system", "content": system_prompt},
    {"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
 ]
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")

generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)

generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_chat, generated_ids)
]
prompt = tokenizer.batch_decode(tokenized_chat)[0]
print(prompt)
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```

#### LMDeploy inference
LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the MMRazor and MMDeploy teams.

```bash
pip install lmdeploy
```

You can run batch inference locally with the following python code:

```python
import lmdeploy
model_dir = "internlm/internlm3-8b-instruct"
pipe = lmdeploy.pipeline(model_dir)
response = pipe("Please tell me five scenic spots in Shanghai")
print(response)

```

Or you can launch an OpenAI compatible server with the following command:

```bash
lmdeploy serve api_server internlm/internlm3-8b-instruct --model-name internlm3-8b-instruct --server-port 23333 
```

Then you can send a chat request to the server:

```bash
curl http://localhost:23333/v1/chat/completions \
    -H "Content-Type: application/json" \
    -d '{
    "model": "internlm3-8b-instruct",
    "messages": [
    {"role": "user", "content": "Please tell me five scenic spots in Shanghai"}
    ]
    }'
```

Find more details in the [LMDeploy documentation](https://lmdeploy.readthedocs.io/en/latest/)



####  Ollama inference

First install ollama,

```python
# install ollama
curl -fsSL https://ollama.com/install.sh | sh
# fetch model
ollama pull internlm/internlm3-8b-instruct
# install 
pip install ollama
```

inference code,

```python
import ollama

system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""

messages = [
    {
        "role": "system",
        "content": system_prompt,
    },
    {
        "role": "user",
        "content": "Please tell me five scenic spots in Shanghai"
    },
]

stream = ollama.chat(
    model='internlm/internlm3-8b-instruct',
    messages=messages,
    stream=True,
)

for chunk in stream:
  print(chunk['message']['content'], end='', flush=True)
```


#### vLLM inference

Refer to [installation](https://docs.vllm.ai/en/latest/getting_started/installation/index.html) to install the latest code of vllm

```python
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
```

inference code:

```python
from vllm import LLM, SamplingParams

llm = LLM(model="internlm/internlm3-8b-instruct")
sampling_params = SamplingParams(temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)

system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""

prompts = [
    {
        "role": "system",
        "content": system_prompt,
    },
    {
        "role": "user",
        "content": "Please tell me five scenic spots in Shanghai"
    },
]
outputs = llm.chat(prompts,
                   sampling_params=sampling_params,
                   use_tqdm=False)
print(outputs)
```





### Thinking Mode
#### Thinking Demo

<img src="https://github.com/InternLM/InternLM/blob/017ba7446d20ecc3b9ab8e7b66cc034500868ab4/assets/solve_puzzle.png?raw=true" width="400"/>







#### Thinking system prompt
```python
thinking_system_prompt = """You are an expert mathematician with extensive experience in mathematical competitions. You approach problems through systematic thinking and rigorous reasoning. When solving problems, follow these thought processes:
## Deep Understanding
Take time to fully comprehend the problem before attempting a solution. Consider:
- What is the real question being asked?
- What are the given conditions and what do they tell us?
- Are there any special restrictions or assumptions?
- Which information is crucial and which is supplementary?
## Multi-angle Analysis
Before solving, conduct thorough analysis:
- What mathematical concepts and properties are involved?
- Can you recall similar classic problems or solution methods?
- Would diagrams or tables help visualize the problem?
- Are there special cases that need separate consideration?
## Systematic Thinking
Plan your solution path:
- Propose multiple possible approaches
- Analyze the feasibility and merits of each method
- Choose the most appropriate method and explain why
- Break complex problems into smaller, manageable steps
## Rigorous Proof
During the solution process:
- Provide solid justification for each step
- Include detailed proofs for key conclusions
- Pay attention to logical connections
- Be vigilant about potential oversights
## Repeated Verification
After completing your solution:
- Verify your results satisfy all conditions
- Check for overlooked special cases
- Consider if the solution can be optimized or simplified
- Review your reasoning process
Remember:
1. Take time to think thoroughly rather than rushing to an answer
2. Rigorously prove each key conclusion
3. Keep an open mind and try different approaches
4. Summarize valuable problem-solving methods
5. Maintain healthy skepticism and verify multiple times
Your response should reflect deep mathematical understanding and precise logical thinking, making your solution path and reasoning clear to others.
When you're ready, present your complete solution with:
- Clear problem understanding
- Detailed solution process
- Key insights
- Thorough verification
Focus on clear, logical progression of ideas and thorough explanation of your mathematical reasoning. Provide answers in the same language as the user asking the question, repeat the final answer using a '\\boxed{}' without any units, you have [[8192]] tokens to complete the answer.
"""
```
#### Transformers inference
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_dir = "internlm/internlm3-8b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
  # pip install -U bitsandbytes
  # 8-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_8bit=True)
  # 4-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_4bit=True)
model = model.eval()

messages = [
    {"role": "system", "content": thinking_system_prompt},
    {"role": "user", "content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."},
 ]
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")

generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)

generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_chat, generated_ids)
]
prompt = tokenizer.batch_decode(tokenized_chat)[0]
print(prompt)
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
#### LMDeploy inference

LMDeploy is a toolkit for compressing, deploying, and serving LLM.

```bash
pip install lmdeploy
```

You can run batch inference locally with the following python code:

```python
from lmdeploy import pipeline, GenerationConfig, ChatTemplateConfig
model_dir = "internlm/internlm3-8b-instruct"
chat_template_config = ChatTemplateConfig(model_name='internlm3')
pipe = pipeline(model_dir, chat_template_config=chat_template_config)

messages = [
        {"role": "system", "content": thinking_system_prompt},
        {"role": "user", "content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."},
]

response = pipe(messages, gen_config=GenerationConfig(max_new_tokens=2048))
print(response)
```

####  Ollama inference

First install ollama,

```python
# install ollama
curl -fsSL https://ollama.com/install.sh | sh
# fetch model
ollama pull internlm/internlm3-8b-instruct
# install
pip install ollama
```

inference code,

```python
import ollama

messages = [
    {
        "role": "system",
        "content": thinking_system_prompt,
    },
    {
        "role": "user",
        "content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."
    },
]

stream = ollama.chat(
    model='internlm/internlm3-8b-instruct',
    messages=messages,
    stream=True,
)

for chunk in stream:
  print(chunk['message']['content'], end='', flush=True)
```


#### 

#### vLLM inference

Refer to [installation](https://docs.vllm.ai/en/latest/getting_started/installation/index.html) to install the latest code of vllm

```python
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
```

inference code


```python
from vllm import LLM, SamplingParams

llm = LLM(model="internlm/internlm3-8b-instruct")
sampling_params = SamplingParams(temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8, max_tokens=8192)

prompts = [
    {
        "role": "system",
        "content": thinking_system_prompt,
    },
    {
        "role": "user",
        "content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."
    },
]
outputs = llm.chat(prompts,
                   sampling_params=sampling_params,
                   use_tqdm=False)
print(outputs)
```



## Open Source License

Code and model weights are licensed under Apache-2.0. 

## Citation

```
@misc{cai2024internlm2,
      title={InternLM2 Technical Report},
      author={Zheng Cai and Maosong Cao and Haojiong Chen and Kai Chen and Keyu Chen and Xin Chen and Xun Chen and Zehui Chen and Zhi Chen and Pei Chu and Xiaoyi Dong and Haodong Duan and Qi Fan and Zhaoye Fei and Yang Gao and Jiaye Ge and Chenya Gu and Yuzhe Gu and Tao Gui and Aijia Guo and Qipeng Guo and Conghui He and Yingfan Hu and Ting Huang and Tao Jiang and Penglong Jiao and Zhenjiang Jin and Zhikai Lei and Jiaxing Li and Jingwen Li and Linyang Li and Shuaibin Li and Wei Li and Yining Li and Hongwei Liu and Jiangning Liu and Jiawei Hong and Kaiwen Liu and Kuikun Liu and Xiaoran Liu and Chengqi Lv and Haijun Lv and Kai Lv and Li Ma and Runyuan Ma and Zerun Ma and Wenchang Ning and Linke Ouyang and Jiantao Qiu and Yuan Qu and Fukai Shang and Yunfan Shao and Demin Song and Zifan Song and Zhihao Sui and Peng Sun and Yu Sun and Huanze Tang and Bin Wang and Guoteng Wang and Jiaqi Wang and Jiayu Wang and Rui Wang and Yudong Wang and Ziyi Wang and Xingjian Wei and Qizhen Weng and Fan Wu and Yingtong Xiong and Chao Xu and Ruiliang Xu and Hang Yan and Yirong Yan and Xiaogui Yang and Haochen Ye and Huaiyuan Ying and Jia Yu and Jing Yu and Yuhang Zang and Chuyu Zhang and Li Zhang and Pan Zhang and Peng Zhang and Ruijie Zhang and Shuo Zhang and Songyang Zhang and Wenjian Zhang and Wenwei Zhang and Xingcheng Zhang and Xinyue Zhang and Hui Zhao and Qian Zhao and Xiaomeng Zhao and Fengzhe Zhou and Zaida Zhou and Jingming Zhuo and Yicheng Zou and Xipeng Qiu and Yu Qiao and Dahua Lin},
      year={2024},
      eprint={2403.17297},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```



## 简介

### InternLM3-8B-Instruct

InternLM3,即书生·浦语大模型第3代,开源了80亿参数,面向通用使用与高阶推理的指令模型(InternLM3-8B-Instruct)。模型具备以下特点:

- **更低的代价取得更高的性能**:
在推理、知识类任务上取得同量级最优性能,超过Llama3.1-8B和Qwen2.5-7B。值得关注的是InternLM3只用了4万亿词元进行训练,对比同级别模型训练成本节省75%以上。
- **深度思考能力**:
InternLM3支持通过长思维链求解复杂推理任务的深度思考模式,同时还兼顾了用户体验更流畅的通用回复模式。

#### 性能评测

我们使用开源评测工具 [OpenCompass](https://github.com/internLM/OpenCompass/) 从学科综合能力、语言能力、知识能力、推理能力、理解能力五大能力维度对InternLM开展全面评测,部分评测结果如下表所示,欢迎访问[ OpenCompass 榜单 ](https://rank.opencompass.org.cn)获取更多的评测结果。

|              | 评测集\模型                     | InternLM3-8B-Instruct | Qwen2.5-7B-Instruct | Llama3.1-8B-Instruct | GPT-4o-mini(闭源) |
| ------------ | ------------------------------- | --------------------- | ------------------- | -------------------- | ----------------- |
| General      | CMMLU(0-shot)                   | **83.1**              | 75.8                | 53.9                 | 66.0              |
|              | MMLU(0-shot)                    | 76.6                  | **76.8**            | 71.8                 | 82.7              |
|              | MMLU-Pro(0-shot)                | **57.6**              | 56.2                | 48.1                 | 64.1              |
| Reasoning    | GPQA-Diamond(0-shot)            | **37.4**              | 33.3                | 24.2                 | 42.9              |
|              | DROP(0-shot)                    | **83.1**              | 80.4                | 81.6                 | 85.2              |
|              | HellaSwag(10-shot)              | **91.2**              | 85.3                | 76.7                 | 89.5              |
|              | KOR-Bench(0-shot)               | **56.4**              | 44.6                | 47.7                 | 58.2              |
| MATH         | MATH-500(0-shot)                | **83.0***             | 72.4                | 48.4                 | 74.0              |
|              | AIME2024(0-shot)                | **20.0***             | 16.7                | 6.7                  | 13.3              |
| Coding       | LiveCodeBench(2407-2409 Pass@1) | **17.8**              | 16.8                | 12.9                 | 21.8              |
|              | HumanEval(Pass@1)               | 82.3                  | **85.4**            | 72.0                 | 86.6              |
| Instrunction | IFEval(Prompt-Strict)           | **79.3**              | 71.7                | 75.2                 | 79.7              |
| LongContext  | RULER(4-128K Average)           | 87.9                  | 81.4                | **88.5**             | 90.7              |
| Chat         | AlpacaEval 2.0(LC WinRate)      | **51.1**              | 30.3                | 25.0                 | 50.7              |
|              | WildBench(Raw Score)            | **33.1**              | 23.3                | 1.5                  | 40.3              |
|              | MT-Bench-101(Score 1-10)        | **8.59**              | 8.49                | 8.37                 | 8.87              |

- 表中标粗的数值表示在对比的开源模型中的最高值。
- 以上评测结果基于 [OpenCompass](https://github.com/internLM/OpenCompass/) 获得(部分数据标注`*`代表使用深度思考模式进行评测),具体测试细节可参见 [OpenCompass](https://github.com/internLM/OpenCompass/) 中提供的配置文件。
- 评测数据会因 [OpenCompass](https://github.com/internLM/OpenCompass/) 的版本迭代而存在数值差异,请以 [OpenCompass](https://github.com/internLM/OpenCompass/) 最新版的评测结果为主。

**局限性:** 尽管在训练过程中我们非常注重模型的安全性,尽力促使模型输出符合伦理和法律要求的文本,但受限于模型大小以及概率生成范式,模型可能会产生各种不符合预期的输出,例如回复内容包含偏见、歧视等有害内容,请勿传播这些内容。由于传播不良信息导致的任何后果,本项目不承担责任。

#### 依赖

```python
transformers >= 4.48
```




#### 常规对话模式

##### Transformers 推理

通过以下的代码加载  InternLM3 8B Instruct 模型

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_dir = "internlm/internlm3-8b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
  # pip install -U bitsandbytes
  # 8-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_8bit=True)
  # 4-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_4bit=True)
model = model.eval()

system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""
messages = [
    {"role": "system", "content": system_prompt},
    {"role": "user", "content": "Please tell me five scenic spots in Shanghai"},
 ]
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")

generated_ids = model.generate(tokenized_chat, max_new_tokens=1024, temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)

generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_chat, generated_ids)
]
prompt = tokenizer.batch_decode(tokenized_chat)[0]
print(prompt)
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```

##### LMDeploy 推理

LMDeploy 是涵盖了 LLM 任务的全套轻量化、部署和服务解决方案。

```bash
pip install lmdeploy
```

你可以使用以下 python 代码进行本地批量推理:

```python
import lmdeploy
model_dir = "internlm/internlm3-8b-instruct"
pipe = lmdeploy.pipeline(model_dir)
response = pipe(["Please tell me five scenic spots in Shanghai"])
print(response)

```

或者你可以使用以下命令启动兼容 OpenAI API 的服务:

```bash
lmdeploy serve api_server internlm/internlm3-8b-instruct --model-name internlm3-8b-instruct --server-port 23333 
```

然后你可以向服务端发起一个聊天请求:

```bash
curl http://localhost:23333/v1/chat/completions \
    -H "Content-Type: application/json" \
    -d '{
    "model": "internlm3-8b-instruct",
    "messages": [
    {"role": "user", "content": "介绍一下深度学习。"}
    ]
    }'
```

更多信息请查看 [LMDeploy 文档](https://lmdeploy.readthedocs.io/en/latest/)



#####  Ollama 推理

准备工作

```python
# install ollama
curl -fsSL https://ollama.com/install.sh | sh
# fetch 模型
ollama pull internlm/internlm3-8b-instruct
# install python库
pip install ollama
```

推理代码

```python
import ollama

system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""

messages = [
    {
        "role": "system",
        "content": system_prompt,
    },
    {
        "role": "user",
        "content": "Please tell me five scenic spots in Shanghai"
    },
]

stream = ollama.chat(
    model='internlm/internlm3-8b-instruct',
    messages=messages,
    stream=True,
)

for chunk in stream:
  print(chunk['message']['content'], end='', flush=True)
```


#### 

##### vLLM 推理

参考[文档](https://docs.vllm.ai/en/latest/getting_started/installation/index.html) 安装 vllm 最新代码

```bash
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
```

推理代码

```python
from vllm import LLM, SamplingParams

llm = LLM(model="internlm/internlm3-8b-instruct")
sampling_params = SamplingParams(temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8)

system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""

prompts = [
    {
        "role": "system",
        "content": system_prompt,
    },
    {
        "role": "user",
        "content": "Please tell me five scenic spots in Shanghai"
    },
]
outputs = llm.chat(prompts,
                   sampling_params=sampling_params,
                   use_tqdm=False)
print(outputs)
```

#### 深度思考模式

##### 深度思考 Demo

<img src="https://github.com/InternLM/InternLM/blob/017ba7446d20ecc3b9ab8e7b66cc034500868ab4/assets/solve_puzzle.png?raw=true" width="400"/>





##### 深度思考 system prompt

```python
thinking_system_prompt = """You are an expert mathematician with extensive experience in mathematical competitions. You approach problems through systematic thinking and rigorous reasoning. When solving problems, follow these thought processes:
## Deep Understanding
Take time to fully comprehend the problem before attempting a solution. Consider:
- What is the real question being asked?
- What are the given conditions and what do they tell us?
- Are there any special restrictions or assumptions?
- Which information is crucial and which is supplementary?
## Multi-angle Analysis
Before solving, conduct thorough analysis:
- What mathematical concepts and properties are involved?
- Can you recall similar classic problems or solution methods?
- Would diagrams or tables help visualize the problem?
- Are there special cases that need separate consideration?
## Systematic Thinking
Plan your solution path:
- Propose multiple possible approaches
- Analyze the feasibility and merits of each method
- Choose the most appropriate method and explain why
- Break complex problems into smaller, manageable steps
## Rigorous Proof
During the solution process:
- Provide solid justification for each step
- Include detailed proofs for key conclusions
- Pay attention to logical connections
- Be vigilant about potential oversights
## Repeated Verification
After completing your solution:
- Verify your results satisfy all conditions
- Check for overlooked special cases
- Consider if the solution can be optimized or simplified
- Review your reasoning process
Remember:
1. Take time to think thoroughly rather than rushing to an answer
2. Rigorously prove each key conclusion
3. Keep an open mind and try different approaches
4. Summarize valuable problem-solving methods
5. Maintain healthy skepticism and verify multiple times
Your response should reflect deep mathematical understanding and precise logical thinking, making your solution path and reasoning clear to others.
When you're ready, present your complete solution with:
- Clear problem understanding
- Detailed solution process
- Key insights
- Thorough verification
Focus on clear, logical progression of ideas and thorough explanation of your mathematical reasoning. Provide answers in the same language as the user asking the question, repeat the final answer using a '\\boxed{}' without any units, you have [[8192]] tokens to complete the answer.
"""
```

##### Transformers 推理


```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_dir = "internlm/internlm3-8b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error.
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
# (Optional) If on low resource devices, you can load model in 4-bit or 8-bit to further save GPU memory via bitsandbytes.
  # InternLM3 8B in 4bit will cost nearly 8GB GPU memory.
  # pip install -U bitsandbytes
  # 8-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_8bit=True)
  # 4-bit: model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, load_in_4bit=True)
model = model.eval()

messages = [
    {"role": "system", "content": thinking_system_prompt},
    {"role": "user", "content": "已知函数\(f(x)=\mathrm{e}^{x}-ax - a^{3}\)。\n(1)当\(a = 1\)时,求曲线\(y = f(x)\)在点\((1,f(1))\)处的切线方程;\n(2)若\(f(x)\)有极小值,且极小值小于\(0\),求\(a\)的取值范围。"},
 ]
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")

generated_ids = model.generate(tokenized_chat, max_new_tokens=8192)

generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(tokenized_chat, generated_ids)
]
prompt = tokenizer.batch_decode(tokenized_chat)[0]
print(prompt)
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
##### LMDeploy 推理

LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the MMRazor and MMDeploy teams.

```bash
pip install lmdeploy
```

You can run batch inference locally with the following python code:

```python
from lmdeploy import pipeline, GenerationConfig, ChatTemplateConfig
model_dir = "internlm/internlm3-8b-instruct"
chat_template_config = ChatTemplateConfig(model_name='internlm3')
pipe = pipeline(model_dir, chat_template_config=chat_template_config)

messages = [
        {"role": "system", "content": thinking_system_prompt},
        {"role": "user", "content": "已知函数\(f(x)=\mathrm{e}^{x}-ax - a^{3}\)。\n(1)当\(a = 1\)时,求曲线\(y = f(x)\)在点\((1,f(1))\)处的切线方程;\n(2)若\(f(x)\)有极小值,且极小值小于\(0\),求\(a\)的取值范围。"},
]

response = pipe(messages, gen_config=GenerationConfig(max_new_tokens=2048))
print(response)
```

#####  Ollama 推理

准备工作

```python
# install ollama
curl -fsSL https://ollama.com/install.sh | sh
# fetch 模型
ollama pull internlm/internlm3-8b-instruct
# install python库
pip install ollama
```

inference code,

```python
import ollama

messages = [
    {
        "role": "system",
        "content": thinking_system_prompt,
    },
    {
        "role": "user",
        "content": "Given the function\(f(x)=\mathrm{e}^{x}-ax - a^{3}\),\n(1) When \(a = 1\), find the equation of the tangent line to the curve \(y = f(x)\) at the point \((1,f(1))\).\n(2) If \(f(x)\) has a local minimum and the minimum value is less than \(0\), determine the range of values for \(a\)."
    },
]

stream = ollama.chat(
    model='internlm/internlm3-8b-instruct',
    messages=messages,
    stream=True,
)

for chunk in stream:
  print(chunk['message']['content'], end='', flush=True)
```


#### 

##### vLLM 推理

参考[文档](https://docs.vllm.ai/en/latest/getting_started/installation/index.html) 安装 vllm 最新代码

```bash
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
```

推理代码

```python
from vllm import LLM, SamplingParams

llm = LLM(model="internlm/internlm3-8b-instruct")
sampling_params = SamplingParams(temperature=1, repetition_penalty=1.005, top_k=40, top_p=0.8, max_tokens=8192)

prompts = [
    {
        "role": "system",
        "content": thinking_system_prompt,
    },
    {
        "role": "user",
        "content": "已知函数\(f(x)=\mathrm{e}^{x}-ax - a^{3}\)。\n(1)当\(a = 1\)时,求曲线\(y = f(x)\)在点\((1,f(1))\)处的切线方程;\n(2)若\(f(x)\)有极小值,且极小值小于\(0\),求\(a\)的取值范围。"
    },
]
outputs = llm.chat(prompts,
                   sampling_params=sampling_params,
                   use_tqdm=False)
print(outputs)
```









## 开源许可证

本仓库的代码和权重依照 Apache-2.0 协议开源。

## 引用

```
@misc{cai2024internlm2,
      title={InternLM2 Technical Report},
      author={Zheng Cai and Maosong Cao and Haojiong Chen and Kai Chen and Keyu Chen and Xin Chen and Xun Chen and Zehui Chen and Zhi Chen and Pei Chu and Xiaoyi Dong and Haodong Duan and Qi Fan and Zhaoye Fei and Yang Gao and Jiaye Ge and Chenya Gu and Yuzhe Gu and Tao Gui and Aijia Guo and Qipeng Guo and Conghui He and Yingfan Hu and Ting Huang and Tao Jiang and Penglong Jiao and Zhenjiang Jin and Zhikai Lei and Jiaxing Li and Jingwen Li and Linyang Li and Shuaibin Li and Wei Li and Yining Li and Hongwei Liu and Jiangning Liu and Jiawei Hong and Kaiwen Liu and Kuikun Liu and Xiaoran Liu and Chengqi Lv and Haijun Lv and Kai Lv and Li Ma and Runyuan Ma and Zerun Ma and Wenchang Ning and Linke Ouyang and Jiantao Qiu and Yuan Qu and Fukai Shang and Yunfan Shao and Demin Song and Zifan Song and Zhihao Sui and Peng Sun and Yu Sun and Huanze Tang and Bin Wang and Guoteng Wang and Jiaqi Wang and Jiayu Wang and Rui Wang and Yudong Wang and Ziyi Wang and Xingjian Wei and Qizhen Weng and Fan Wu and Yingtong Xiong and Chao Xu and Ruiliang Xu and Hang Yan and Yirong Yan and Xiaogui Yang and Haochen Ye and Huaiyuan Ying and Jia Yu and Jing Yu and Yuhang Zang and Chuyu Zhang and Li Zhang and Pan Zhang and Peng Zhang and Ruijie Zhang and Shuo Zhang and Songyang Zhang and Wenjian Zhang and Wenwei Zhang and Xingcheng Zhang and Xinyue Zhang and Hui Zhao and Qian Zhao and Xiaomeng Zhao and Fengzhe Zhou and Zaida Zhou and Jingming Zhuo and Yicheng Zou and Xipeng Qiu and Yu Qiao and Dahua Lin},
      year={2024},
      eprint={2403.17297},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```