x54-729 commited on
Commit
9cacdab
·
1 Parent(s): 9442c99

fix img url

Browse files
Files changed (1) hide show
  1. README.md +11 -11
README.md CHANGED
@@ -27,7 +27,7 @@ tags:
27
  State-of-the-art bilingual open-sourced Math reasoning LLMs.
28
  A **solver**, **prover**, **verifier**, **augmentor**.
29
 
30
- [💻 Github](https://github.com/InternLM/InternLM-Math) [🤗 Demo](https://huggingface.co/spaces/internlm/internlm2-math-7b) [🤗 Checkpoints](https://huggingface.co/internlm/internlm2-math-7b) [![OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM2-Math-7B) [<img src="https://raw.githubusercontent.com/InternLM/InternLM/main/assets/modelscope_logo.png" width="20px" /> ModelScope](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-math-7b/summary)
31
  </div>
32
 
33
  # News
@@ -41,16 +41,16 @@ A **solver**, **prover**, **verifier**, **augmentor**.
41
  - **Also can be viewed as a reward model, which supports the Outcome/Process/Lean Reward Model.** We supervise InternLM2-Math with various types of reward modeling data, to make InternLM2-Math can also verify chain-of-thought processes. We also add the ability to convert a chain-of-thought process into Lean 3 code.
42
  - **A Math LM Augment Helper** and **Code Interpreter**. InternLM2-Math can help augment math reasoning problems and solve them using the code interpreter which makes you generate synthesis data quicker!
43
 
44
- ![hungarian](https://raw.githubusercontent.com/InternLM/InternLM/main/assets/hungary.jpeg)
45
 
46
  # Models
47
  **InternLM2-Math-Base-7B** and **InternLM2-Math-Base-20B** are pretrained checkpoints. **InternLM2-Math-7B** and **InternLM2-Math-20B** are SFT checkpoints.
48
  | Model |Model Type | Transformers(HF) |OpenXLab| ModelScope | Release Date |
49
  |---|---|---|---|---|---|
50
- | **InternLM2-Math-Base-7B** | Base| [🤗internlm/internlm2-math-base-7b](https://huggingface.co/internlm/internlm2-math-base-7b) |[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM2-Math-Base-7B)| [<img src="https://raw.githubusercontent.com/InternLM/InternLM/main/assets/modelscope_logo.png" width="20px" /> internlm2-math-base-7b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-math-base-7b/summary)| 2024-01-23|
51
- | **InternLM2-Math-Base-20B** | Base| [🤗internlm/internlm2-math-base-20b](https://huggingface.co/internlm/internlm2-math-base-20b) |[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM2-Math-Base-20B)|[<img src="https://raw.githubusercontent.com/InternLM/InternLM/main/assets/modelscope_logo.png" width="20px" /> internlm2-math-base-20b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-math-base-20b/summary)| 2024-01-23|
52
- | **InternLM2-Math-7B** | Chat| [🤗internlm/internlm2-math-7b](https://huggingface.co/internlm/internlm2-math-7b) |[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM2-Math-7B)|[<img src="https://raw.githubusercontent.com/InternLM/InternLM/main/assets/modelscope_logo.png" width="20px" /> internlm2-math-7b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-math-7b/summary)| 2024-01-23|
53
- | **InternLM2-Math-20B** | Chat| [🤗internlm/internlm2-math-20b](https://huggingface.co/internlm/internlm2-math-20b) |[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM2-Math-20B)|[<img src="https://raw.githubusercontent.com/InternLM/InternLM/main/assets/modelscope_logo.png" width="20px" /> internlm2-math-20b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-math-20b/summary)| 2024-01-23|
54
 
55
 
56
  # Performance
@@ -121,19 +121,19 @@ print(response)
121
  We list some instructions used in our SFT. You can use them to help you. You can use the other ways to prompt the model, but the following are recommended. InternLM2-Math may combine the following abilities but it is not guaranteed.
122
 
123
  Translate proof problem to Lean:
124
- ![nl2lean3](https://raw.githubusercontent.com/InternLM/InternLM/main/assets/nl2lean.jpeg)
125
 
126
  Using Lean 3 to solve GSM8K problem:
127
- ![gsm8k_lean](https://raw.githubusercontent.com/InternLM/InternLM/main/assets/gsm8k_lean.jpeg)
128
 
129
  Generate problem based on Lean 3 code:
130
- ![lean_problem](https://raw.githubusercontent.com/InternLM/InternLM/main/assets/lean_problem.jpeg)
131
 
132
  Play 24 point game:
133
- ![24](https://raw.githubusercontent.com/InternLM/InternLM/main/assets/24.jpeg)
134
 
135
  Augment a harder math problem:
136
- ![augment_hard](https://raw.githubusercontent.com/InternLM/InternLM/main/assets/augment_hard.jpeg)
137
 
138
  | Description | Query |
139
  | --- | --- |
 
27
  State-of-the-art bilingual open-sourced Math reasoning LLMs.
28
  A **solver**, **prover**, **verifier**, **augmentor**.
29
 
30
+ [💻 Github](https://github.com/InternLM/InternLM-Math) [🤗 Demo](https://huggingface.co/spaces/internlm/internlm2-math-7b) [🤗 Checkpoints](https://huggingface.co/internlm/internlm2-math-7b) [![OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM2-Math-7B) [<img src="https://raw.githubusercontent.com/InternLM/InternLM-Math/main/assets/modelscope_logo.png" width="20px" /> ModelScope](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-math-7b/summary)
31
  </div>
32
 
33
  # News
 
41
  - **Also can be viewed as a reward model, which supports the Outcome/Process/Lean Reward Model.** We supervise InternLM2-Math with various types of reward modeling data, to make InternLM2-Math can also verify chain-of-thought processes. We also add the ability to convert a chain-of-thought process into Lean 3 code.
42
  - **A Math LM Augment Helper** and **Code Interpreter**. InternLM2-Math can help augment math reasoning problems and solve them using the code interpreter which makes you generate synthesis data quicker!
43
 
44
+ ![hungarian](https://raw.githubusercontent.com/InternLM/InternLM-Math/main/assets/hungary.jpeg)
45
 
46
  # Models
47
  **InternLM2-Math-Base-7B** and **InternLM2-Math-Base-20B** are pretrained checkpoints. **InternLM2-Math-7B** and **InternLM2-Math-20B** are SFT checkpoints.
48
  | Model |Model Type | Transformers(HF) |OpenXLab| ModelScope | Release Date |
49
  |---|---|---|---|---|---|
50
+ | **InternLM2-Math-Base-7B** | Base| [🤗internlm/internlm2-math-base-7b](https://huggingface.co/internlm/internlm2-math-base-7b) |[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM2-Math-Base-7B)| [<img src="https://raw.githubusercontent.com/InternLM/InternLM-Math/main/assets/modelscope_logo.png" width="20px" /> internlm2-math-base-7b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-math-base-7b/summary)| 2024-01-23|
51
+ | **InternLM2-Math-Base-20B** | Base| [🤗internlm/internlm2-math-base-20b](https://huggingface.co/internlm/internlm2-math-base-20b) |[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM2-Math-Base-20B)|[<img src="https://raw.githubusercontent.com/InternLM/InternLM-Math/main/assets/modelscope_logo.png" width="20px" /> internlm2-math-base-20b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-math-base-20b/summary)| 2024-01-23|
52
+ | **InternLM2-Math-7B** | Chat| [🤗internlm/internlm2-math-7b](https://huggingface.co/internlm/internlm2-math-7b) |[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM2-Math-7B)|[<img src="https://raw.githubusercontent.com/InternLM/InternLM-Math/main/assets/modelscope_logo.png" width="20px" /> internlm2-math-7b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-math-7b/summary)| 2024-01-23|
53
+ | **InternLM2-Math-20B** | Chat| [🤗internlm/internlm2-math-20b](https://huggingface.co/internlm/internlm2-math-20b) |[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM2-Math-20B)|[<img src="https://raw.githubusercontent.com/InternLM/InternLM-Math/main/assets/modelscope_logo.png" width="20px" /> internlm2-math-20b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-math-20b/summary)| 2024-01-23|
54
 
55
 
56
  # Performance
 
121
  We list some instructions used in our SFT. You can use them to help you. You can use the other ways to prompt the model, but the following are recommended. InternLM2-Math may combine the following abilities but it is not guaranteed.
122
 
123
  Translate proof problem to Lean:
124
+ ![nl2lean3](https://raw.githubusercontent.com/InternLM/InternLM-Math/main/assets/nl2lean.jpeg)
125
 
126
  Using Lean 3 to solve GSM8K problem:
127
+ ![gsm8k_lean](https://raw.githubusercontent.com/InternLM/InternLM-Math/main/assets/gsm8k_lean.jpeg)
128
 
129
  Generate problem based on Lean 3 code:
130
+ ![lean_problem](https://raw.githubusercontent.com/InternLM/InternLM-Math/main/assets/lean_problem.jpeg)
131
 
132
  Play 24 point game:
133
+ ![24](https://raw.githubusercontent.com/InternLM/InternLM-Math/main/assets/24.jpeg)
134
 
135
  Augment a harder math problem:
136
+ ![augment_hard](https://raw.githubusercontent.com/InternLM/InternLM-Math/main/assets/augment_hard.jpeg)
137
 
138
  | Description | Query |
139
  | --- | --- |