|
import os |
|
import torch |
|
import numpy as np |
|
import torchvision |
|
from urllib.request import urlopen |
|
from PIL import Image, ImageDraw, ImageFont |
|
from torchvision.transforms.functional import InterpolationMode |
|
import torchvision.transforms as transforms |
|
from decord import VideoReader |
|
|
|
def get_font(): |
|
truetype_url = 'https://huggingface.co./internlm/internlm-xcomposer2d5-7b/resolve/main/SimHei.ttf?download=true' |
|
ff = urlopen(truetype_url) |
|
font = ImageFont.truetype(ff, size=40) |
|
return font |
|
|
|
def padding_336(b, pad=336): |
|
width, height = b.size |
|
tar = int(np.ceil(height / pad) * pad) |
|
top_padding = 0 |
|
bottom_padding = tar - height - top_padding |
|
left_padding = 0 |
|
right_padding = 0 |
|
b = transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255]) |
|
|
|
return b |
|
|
|
def Image_transform(img, hd_num=25): |
|
width, height = img.size |
|
trans = False |
|
if width < height: |
|
img = img.transpose(Image.TRANSPOSE) |
|
trans = True |
|
width, height = img.size |
|
ratio = (width/ height) |
|
scale = 1 |
|
while scale*np.ceil(scale/ratio) <= hd_num: |
|
scale += 1 |
|
scale -= 1 |
|
scale = min(np.ceil(width / 560), scale) |
|
new_w = int(scale * 560) |
|
new_h = int(new_w / ratio) |
|
|
|
|
|
img = transforms.functional.resize(img, [new_h, new_w],) |
|
img = padding_336(img, 560) |
|
width, height = img.size |
|
if trans: |
|
img = img.transpose(Image.TRANSPOSE) |
|
|
|
return img |
|
|
|
|
|
def Video_transform(img, hd_num=25): |
|
width, height = img.size |
|
trans = False |
|
if width < height: |
|
img = img.transpose(Image.TRANSPOSE) |
|
trans = True |
|
width, height = img.size |
|
ratio = (width/ height) |
|
scale = 1 |
|
new_h = int(scale * 560) |
|
new_w = int(new_h * ratio) |
|
|
|
|
|
img = transforms.functional.resize(img, [new_h, new_w],) |
|
img = img.transpose(Image.TRANSPOSE) |
|
img = padding_336(img, 560) |
|
width, height = img.size |
|
if not trans: |
|
img = img.transpose(Image.TRANSPOSE) |
|
|
|
return img |
|
|
|
def frame2img(imgs, font): |
|
new_imgs = [] |
|
for img in imgs: |
|
w, h = img.size |
|
scale = w/h |
|
if w > h: |
|
new_w = 560 * 2 |
|
new_h = int(560 * 2 / scale) |
|
else: |
|
new_w = int(560 * 2 * scale) |
|
new_h = 560 * 2 |
|
img = transforms.functional.resize(img, [new_h, new_w],) |
|
new_imgs.append(img) |
|
imgs = new_imgs |
|
new_w = 0 |
|
new_h = 0 |
|
pad = 40 |
|
if w > h: |
|
for im in imgs: |
|
w,h = im.size |
|
new_w = max(new_w, w) |
|
new_h += h + 10 + pad |
|
new_img = Image.new('RGB', (new_w, new_h), 'white') |
|
draw = ImageDraw.Draw(new_img) |
|
curr_h = 0 |
|
for idx, im in enumerate(imgs): |
|
w,h = im.size |
|
new_img.paste(im, (0, pad + curr_h)) |
|
draw.text((0, curr_h ), f'<IMAGE {idx}>', font=font, fill='black') |
|
if idx + 1 < len(imgs): |
|
draw.line([(0, pad +curr_h + h +5), (new_w, pad +curr_h + h +5)], fill = 'black', width=2) |
|
curr_h += h + 10 + pad |
|
|
|
else: |
|
for im in imgs: |
|
w,h = im.size |
|
new_w += w + 10 |
|
new_h = max(new_h, h) |
|
new_h += pad |
|
new_img = Image.new('RGB', (new_w, new_h), 'white') |
|
draw = ImageDraw.Draw(new_img) |
|
curr_w = 0 |
|
for idx, im in enumerate(imgs): |
|
w,h = im.size |
|
new_img.paste(im, (curr_w, pad)) |
|
draw.text((curr_w, 0), f'<IMAGE {idx}>', font=font, fill='black') |
|
if idx + 1 < len(imgs): |
|
draw.line([(curr_w + w + 5, 0), (curr_w + w + 5, new_h)], fill = 'black', width=2) |
|
curr_w += w + 10 |
|
return new_img |
|
|
|
def load_video(video_path, num_frm=32, start=None, end=None): |
|
vid = VideoReader(video_path, num_threads=1) |
|
fps = vid.get_avg_fps() |
|
t_stride = int(round(float(fps) / int(1))) |
|
start_idx = 0 if start is None else start |
|
end_idx = len(vid) if end is None else end |
|
all_pos = list(range(start_idx, end_idx, t_stride)) |
|
try: |
|
images = [vid[i].numpy() for i in all_pos] |
|
except: |
|
images = [vid[i].asnumpy() for i in all_pos] |
|
if len(images) > num_frm: |
|
num_frm = min(num_frm, len(images)) |
|
step_size = len(images) / (num_frm + 1) |
|
indices = [int(i*step_size) for i in range(num_frm)] |
|
images = [images[i] for i in indices] |
|
images = [Image.fromarray(arr) for arr in images] |
|
return images |
|
|
|
|