File size: 30,694 Bytes
adedd7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch InternLMXComposer2 model."""
import os
import re
import copy
import queue
import threading
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from PIL import Image
import numpy as np
import random
from torch import nn
import torch.nn.functional as F
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from transformers.modeling_outputs import CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from transformers.utils import (add_start_docstrings_to_model_forward,
replace_return_docstrings)
from transformers import StoppingCriteria, StoppingCriteriaList
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
try:
from transformers.generation.streamers import BaseStreamer
except: # noqa # pylint: disable=bare-except
BaseStreamer = None
import torchvision.transforms as transforms
from torchvision.transforms.functional import InterpolationMode
from .build_mlp import build_vision_projector, build_vision_tower
from .ixc_utils import Image_transform, Video_transform, load_video, frame2img, get_font
from .configuration_internlm_xcomposer2 import InternLMXcomposer2Config
from .modeling_internlm2 import (InternLM2_INPUTS_DOCSTRING, InternLM2Model,
InternLM2PreTrainedModel)
_CONFIG_FOR_DOC = 'InternLMXcomposer2Config'
image_extensions = {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp'}
video_extensions = {'.mp4', '.avi', '.mkv', '.mov', '.wmv'}
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops=[], encounters=1):
super().__init__()
self.stops = stops
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop in self.stops:
if torch.all((stop == input_ids[0][-len(stop):])).item():
return True
return False
def get_stopping_criteria(stop_words_ids):
stop_words_ids = [torch.tensor([i]).cuda() for i in stop_words_ids]
stopping_criteria = StoppingCriteriaList(
[StoppingCriteriaSub(stops=stop_words_ids)])
return stopping_criteria
def set_random_seed(seed, set_cudnn=False):
"""Set the random seed for reproducibility.
Parameters:
seed (int): The seed to use for generating random numbers.
"""
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed) # For multi-GPU.
np.random.seed(seed)
random.seed(seed)
if set_cudnn and torch.backends.cudnn.is_available():
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def find_subarray_indices(tensor, subarray):
tensor_len = len(tensor)
subarray_len = len(subarray)
indices = []
if subarray_len > tensor_len:
return indices # Subarray longer than tensor, can't be a match
for i in range(tensor_len - subarray_len + 1):
if torch.equal(tensor[i:i + subarray_len], subarray):
indices.append((i, i + subarray_len))
return indices
class InternLMXComposer2ForCausalLM(InternLM2PreTrainedModel):
_auto_class = 'AutoModelForCausalLM'
_tied_weights_keys = ['output.weight']
def __init__(self, config):
super().__init__(config)
self.model = InternLM2Model(config)
self.vocab_size = config.vocab_size
self.score = nn.Linear(config.hidden_size, 1, bias=False)
self.tokenizer = None
self.hd_num = 25
self.font = get_font()
self.max_length = config.max_length
print(f'Set max length to {self.max_length}')
# Initialize weights and apply final processing
self.post_init()
self.plora_glb_GN = nn.Parameter(torch.zeros([1, 1, 4096]))
self.plora_sub_GN = nn.Parameter(torch.zeros([1, 1, 1, 4096]))
self.vit = build_vision_tower()
self.vision_proj = build_vision_projector()
self.vis_processor = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711)),
])
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, InternLM2Model):
module.gradient_checkpointing = value
if value:
self.vit.vision_tower.vision_model.encoder.gradient_checkpointing = value
def get_input_embeddings(self):
return self.model.tok_embeddings
def set_input_embeddings(self, value):
self.model.tok_embeddings = value
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def encode_text(self, text, add_special_tokens=False):
token = self.tokenizer(
text, return_tensors='pt',
add_special_tokens=add_special_tokens).input_ids.to(self.device)
embs = self.model.tok_embeddings(token)
return embs
def encode_img(self, image, hd_num=25):
if image is None:
return None
if isinstance(image, str):
_, ext = os.path.splitext(image)
if ext.lower() in image_extensions:
image = Image.open(image).convert('RGB')
image = Image_transform(image, hd_num = hd_num)
elif ext.lower() in video_extensions:
image = load_video(image)
image = frame2img(image, self.font)
image = Video_transform(image, hd_num = hd_num)
else:
print ('Unknow input format', image)
return None
image = self.vis_processor(image).unsqueeze(0).to(self.device)
else:
assert isinstance(image, torch.Tensor)
img_embeds, atts_img, img_target = self.img2emb(image)
return img_embeds
def img2emb(self, image):
img_embeds, img_split = self.vit([image],
self.plora_glb_GN, self.plora_sub_GN)
if len(img_split) > 1:
print ('Batch Size >1 is not supported.')
assert 0
#print (img_embeds.shape)
img_embeds = self.vision_proj(img_embeds)
atts_img = torch.ones(
img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device)
img_target = torch.ones(
img_embeds.size()[:2], dtype=torch.long).to(
img_embeds.device) * -100
return img_embeds, atts_img, img_target
def prompt_wrap(self, img_embeds, prompt):
batch_size = img_embeds.shape[0]
p_before, p_after = prompt.split('<ImageHere>')
p_before_tokens = self.tokenizer(
p_before, return_tensors='pt',
add_special_tokens=True).to(img_embeds.device)
p_before_embeds = self.model.tok_embeddings(
p_before_tokens.input_ids).expand(batch_size, -1, -1)
wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds], dim=1)
wrapped_atts_img = torch.ones(
wrapped_img_embeds.size()[:-1],
dtype=torch.long).to(img_embeds.device)
wrapped_target = torch.ones(
batch_size, wrapped_img_embeds.shape[1], dtype=torch.long).to(
img_embeds.device) * -100
return wrapped_img_embeds, wrapped_atts_img, wrapped_target
def text2emb(self, text, add_special_tokens=False):
to_regress_tokens = self.tokenizer(
text,
return_tensors='pt',
padding='longest',
truncation=True,
max_length=self.max_length,
add_special_tokens=add_special_tokens
).to(self.device)
targets = self.mask_human_targets(to_regress_tokens.input_ids)
targets = targets.to(self.device)
return to_regress_tokens, targets
def apply_chat_template(self, conversation, image, max_length: int=16384, hd_num: int=24, apply_template=True):
if apply_template:
prompt = ''
for message in conversation:
role = message['role']
content = message['content']
if role in ['system', 'user', 'assistant']:
prompt += f"""[UNUSED_TOKEN_146]{role}\n{content}[UNUSED_TOKEN_145]\n"""
else:
raise NotImplementedError(f"The role '{role}' is not a valid")
# end
prompt = prompt + '</s>'
# reward token id
prompt = prompt + '[UNUSED_TOKEN_130]'
else:
image_nums = len(image)
prompt = conversation
image_nums = len(image)
if image_nums == 1 and prompt.find('<ImageHere>') == -1:
# print ('auto append image at the begining')
prompt = '<ImageHere>' + prompt
parts = prompt.split('<ImageHere>')
wrap_tokens = []
wrap_embeds, wrap_im_mask = [], []
temp_len = 0
need_bos = True
if len(parts) != image_nums + 1:
#raise ValueError('Invalid <ImageHere> prompt format.')
print ('Waring! The image number != given position!')
if image_nums > 1:
hd_num = 6
else:
hu_num = hd_num
for idx, part in enumerate(parts):
if need_bos or len(part) > 0:
part_tokens = self.tokenizer(
part,
return_tensors='pt',
padding='longest',
add_special_tokens=need_bos).to(self.device)
if need_bos:
need_bos = False
wrap_tokens.append(part_tokens.input_ids)
part_embeds = self.model.tok_embeddings(
part_tokens.input_ids)
wrap_embeds.append(part_embeds)
wrap_im_mask.append(torch.zeros(part_embeds.shape[:2]))
temp_len += part_embeds.shape[1]
if idx < image_nums:
if isinstance(image[idx], str):
img = self.encode_img(image[idx], hd_num)
else:
# torch.tensor
img, _, _ = self.img2emb(image[idx])
wrap_embeds.append(img)
wrap_token = torch.ones(img.shape[:2], dtype=torch.long).to(self.device) * -100
wrap_tokens.append(wrap_token)
wrap_im_mask.append(torch.ones(img.shape[:2]))
temp_len += img.shape[1]
if temp_len > max_length:
break
wrap_tokens = torch.cat(wrap_tokens, dim=1)
wrap_embeds = torch.cat(wrap_embeds, dim=1)
wrap_im_mask = torch.cat(wrap_im_mask, dim=1)
wrap_embeds = wrap_embeds[:, :max_length].to(self.device)
wrap_im_mask = wrap_im_mask[:, :max_length].to(self.device).bool()
return wrap_embeds, wrap_im_mask, temp_len
def get_score(self, conversation: List[dict], image: List[str], max_length: int=16384, hd_num: int=24, apply_template: bool=True):
inputs_embeds, im_mask, _ = self.apply_chat_template(conversation, image, max_length, hd_num, apply_template)
attention_mask = torch.ones(1, inputs_embeds.shape[1]).to(bool).to(self.device)
outputs = self.forward(inputs_embeds=inputs_embeds, attention_mask=attention_mask, im_mask=im_mask)
score = outputs.logits.cpu().item()
return score
def get_scores(self, conversations: List[List[dict]], images: List[List[str]], max_length: int=16384, hd_num: int=24, apply_template: bool=True):
temp_embeds = []
temp_im_mask = []
for conversation, image in zip(conversations, images):
inputs_embeds, im_mask, _ = self.apply_chat_template(conversation, image, max_length, hd_num, apply_template)
temp_embeds.append(inputs_embeds)
temp_im_mask.append(im_mask)
temp_max_len = np.max([i.shape[1] for i in temp_embeds])
temp_max_len = min(temp_max_len, max_length)
batch_input_embeds, batch_atts, batch_im_mask = [], [], []
pad = torch.ones([1, 1]) * self.tokenizer.pad_token_id
pad = pad.long().to(self.device)
pad_emb = self.model.tok_embeddings(pad)
for idx in range(len(temp_embeds)):
temp_len = temp_embeds[idx].shape[1]
dtype = temp_im_mask[idx].dtype
if temp_len >= temp_max_len:
batch_input_embeds.append(temp_embeds[idx][:, :temp_max_len])
batch_atts.append(torch.ones(1, temp_max_len).to(dtype).to(self.device))
batch_im_mask.append(temp_im_mask[idx][:, :temp_max_len])
else:
batch_input_embeds.append(torch.cat([temp_embeds[idx], pad_emb.repeat(1, temp_max_len-temp_len, 1)], dim=1))
batch_atts.append(torch.cat([torch.ones(1, temp_len), torch.zeros(1, temp_max_len-temp_len)], dim=1).to(dtype).to(self.device))
batch_im_mask.append(torch.cat([temp_im_mask[idx], (torch.zeros(1, temp_max_len-temp_len)).to(dtype).to(self.device)], dim=1))
batch_inputs_embeds = torch.cat(batch_input_embeds, dim=0)
batch_atts = torch.cat(batch_atts, dim=0)
batch_im_mask = torch.cat(batch_im_mask, dim=0)
outputs = self.forward(inputs_embeds=batch_inputs_embeds, attention_mask=batch_atts, im_mask=batch_im_mask)
scores = outputs.logits.squeeze().cpu().tolist()
return scores
@torch.no_grad()
def compare(self, conversation1: List[dict], image1: List[str], conversation2: List[dict], image2: List[str], max_length: int=16384, hd_num: int=24, return_logits: bool=False, apply_template: bool=True):
score1 = self.get_score(conversation1, image1, max_length, hd_num, apply_template)
score2 = self.get_score(conversation2, image2, max_length, hd_num, apply_template)
if return_logits:
return score1 > score2, [score1, score2]
else:
return score1 > score2
@torch.no_grad()
def rank(self, conversations: List[List[dict]], images: List[List[str]], max_length: int=16384, hd_num: int=24, return_logits: bool=False, apply_template: bool=True):
scores = self.get_scores(conversations, images, max_length, hd_num, apply_template)
if return_logits:
return sorted(range(len(scores)), key=lambda i: scores[i], reverse=True), scores
else:
return sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)
def interleav_wrap(self, img_list, text_list, image_nums):
temp_tokens = []
temp_embeds = []
temp_im_mask = []
temp_tars = []
# encode_image
img_embeds, img_split = self.vit(img_list, self.plora_glb_GN, self.plora_sub_GN)
img_embeds = self.vision_proj(img_embeds)
for idx, text in enumerate(text_list):
idx_ = idx // 2
image_num = image_nums[idx_]
im_id = int(np.sum(image_nums[:idx_]))
images = []
for i in range(image_num):
st = int(np.sum(img_split[:im_id + i]))
sp = img_split[im_id + i]
temp_img = img_embeds[:, st:st+sp]
images.append(temp_img)
atts_img = torch.ones((len(images), images[0].shape[1]), dtype=torch.long).to(self.device)
img_target = torch.ones(
(len(images), images[0].shape[1]), dtype=torch.long).to(
self.device) * -100
if image_num == 1 and text.find('<ImageHere>') == -1:
text = '<ImageHere>' + text
parts = text.split('<ImageHere>')
wrap_tokens, wrap_embeds, wrap_im_mask = [], [], []
temp_len = 0
need_bos = True
for idx, part in enumerate(parts):
if need_bos or len(part) > 0:
part_tokens = self.tokenizer(part, return_tensors='pt', padding='longest',
add_special_tokens=need_bos).to(self.device)
if need_bos:
need_bos = False
wrap_tokens.append(part_tokens.input_ids)
part_embeds = self.model.tok_embeddings(part_tokens.input_ids)
wrap_embeds.append(part_embeds)
wrap_im_mask.append(torch.zeros(part_embeds.shape[:2]).to(self.device))
temp_len += part_embeds.shape[1]
if idx < image_num:
wrap_embeds.append(images[idx])
wrap_token = torch.ones(images[idx].shape[:2], dtype=torch.long).to(self.device) * -100
wrap_tokens.append(wrap_token)
wrap_im_mask.append(torch.ones(images[idx].shape[:2]).to(self.device))
temp_len += images[idx].shape[1]
if temp_len > self.max_length:
break
wrap_tokens = torch.cat(wrap_tokens, dim=1)
wrap_embeds = torch.cat(wrap_embeds, dim=1)
wrap_im_mask = torch.cat(wrap_im_mask, dim=1)
wrap_target = self.mask_human_targets(wrap_tokens).to(self.device)
temp_tokens.append(wrap_tokens)
temp_embeds.append(wrap_embeds)
temp_im_mask.append(wrap_im_mask)
temp_tars.append(wrap_target)
temp_max_len = np.max([i.shape[1] for i in temp_embeds])
temp_max_len = min(temp_max_len, self.max_length)
final_input_ids, final_input_embeds, final_atts, final_tars, final_mask = [], [], [], [], []
pad = torch.ones([1, 1]) * self.tokenizer.pad_token_id
pad = pad.long().to(self.device)
pad_emb = self.model.tok_embeddings(pad)
for idx in range(len(temp_embeds)):
temp_len = temp_embeds[idx].shape[1]
if temp_len >= temp_max_len:
final_input_ids.append(temp_tokens[idx][:, :temp_max_len])
final_input_embeds.append(temp_embeds[idx][:, :temp_max_len])
final_atts.append(torch.ones(1, temp_max_len).to(wrap_target.dtype).to(self.device))
final_tars.append(temp_tars[idx][:, :temp_max_len])
final_mask.append(temp_im_mask[idx][:, :temp_max_len])
else:
final_input_ids.append(torch.cat([temp_tokens[idx], (torch.ones(1, temp_max_len-temp_len) * self.tokenizer.pad_token_id).to(wrap_target.dtype).to(self.device)], dim=1))
final_input_embeds.append(torch.cat([temp_embeds[idx], pad_emb.repeat(1, temp_max_len-temp_len, 1)], dim=1))
final_atts.append(torch.cat([torch.ones(1, temp_len), torch.zeros(1, temp_max_len-temp_len)], dim=1).to(wrap_target.dtype).to(self.device))
final_tars.append(torch.cat([temp_tars[idx], (torch.ones(1, temp_max_len-temp_len)*-100).to(wrap_target.dtype).to(self.device)], dim=1))
final_mask.append(torch.cat([temp_im_mask[idx], (torch.zeros(1, temp_max_len-temp_len)).to(wrap_target.dtype).to(self.device)], dim=1))
input_ids = torch.cat(final_input_ids, dim=0)
inputs_embeds = torch.cat(final_input_embeds, dim=0)
attention_mask = torch.cat(final_atts, dim=0)
targets = torch.cat(final_tars, dim=0)
im_mask = torch.cat(final_mask, dim=0)
# to avoid error in DPO loss
input_ids[input_ids == -100] = self.tokenizer.pad_token_id
return input_ids, inputs_embeds, attention_mask, targets, im_mask
def mask_human_targets(self, input_ids, pure=False):
target_batch = []
system_tokens = torch.tensor([92543, 9081]).to(self.device)
for bs in range(input_ids.shape[0]):
ids = input_ids[bs]
targets = copy.deepcopy(ids)
end_count = 0
last_eoa = 0
# 92542 -> [UNUSED_TOKEN_145]
# 92543 -> [UNUSED_TOKEN_146]
# 9081 -> system
for i, temp_id in enumerate(ids):
if temp_id == 92542:
search_results = find_subarray_indices(targets[last_eoa:i + 1], system_tokens)
if len(search_results) > 0:
targets[last_eoa:i + 1] = -100
last_eoa = i + 1
else:
if end_count % 2 == 0:
targets[last_eoa:i + 6] = -100
else:
last_eoa = i + 1
end_count += 1
# # eos and following pad
elif temp_id == 2:
# loss on eos, but not on pad
targets[i + 1:] = -100
break
# trunction, end at last question
if temp_id != 2 and end_count % 2 == 0:
# mask all after the last answer
targets[last_eoa + 1:] = -100
target_batch.append(targets.unsqueeze(0))
target_batch = torch.cat(target_batch, dim=0)
return target_batch
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
@replace_return_docstrings(
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
samples = kwargs.get('samples', None)
if samples:
infer_mode = samples.get('infer_mode', 'base')
if samples['data_type'][0] == 'text':
has_img = False
elif samples['data_type'][0] == 'multi':
has_img = True
else:
raise NotImplementedError
# encode text
text_chosen = samples['chosen'][0]
text_rejected = samples['rejected'][0]
text = [x for pair in zip(text_chosen, text_rejected) for x in pair]
# encode image
if has_img:
image = samples['image'][0]
bs = len(text)
image_nums = []
temp_image = []
for im in image:
if type(im) is list:
image_nums.append(len(im))
temp_image.extend(im)
else:
image_nums.append(1)
temp_image.append(im)
image = temp_image
assert type(image) is list and len(image_nums) * 2 == bs
input_ids_for_loss, to_regress_embeds, attention_mask, targets, im_mask = self.interleav_wrap(
image, text, image_nums)
else:
to_regress_tokens, targets = self.text2emb(
text, add_special_tokens=True)
to_regress_embeds = self.model.tok_embeddings(
to_regress_tokens.input_ids)
attention_mask = to_regress_tokens.attention_mask
im_mask = torch.zeros(to_regress_embeds.shape[:2]).cuda()
input_ids_for_loss = to_regress_tokens.input_ids
input_ids_for_loss = input_ids_for_loss[:, :self.max_length]
inputs_embeds = to_regress_embeds[:, :self.max_length]
attention_mask = attention_mask[:, :self.max_length]
targets = targets[:, :self.max_length]
im_mask = im_mask[:, :self.max_length].bool()
labels = targets
else:
im_mask = kwargs.get('im_mask', None)
infer_mode = kwargs.get('infer_mode', 'base')
if im_mask is None and inputs_embeds is not None:
im_mask = torch.zeros(inputs_embeds.shape[:2]).to(
inputs_embeds.device)
im_mask = im_mask.bool()
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else
self.config.output_hidden_states)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
transformer_outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
im_mask=im_mask,
infer_mode=infer_mode,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
logits = logits.float()
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
ends = attention_mask.cumsum(dim=1).argmax(dim=1).view(-1,1)
pooled_logits = torch.gather(logits.squeeze(-1), 1, ends)
loss = None
if self.training:
chosen_idx = torch.arange(0, batch_size, 2)
rejected_idx = chosen_idx + 1
loss = -F.logsigmoid(pooled_logits[chosen_idx] - pooled_logits[rejected_idx]).mean()
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def prepare_inputs_for_generation(self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
im_mask=None,
infer_mode='base',
**kwargs):
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
position_ids = kwargs.get('position_ids', None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1]:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
model_inputs = {'input_ids': input_ids}
im_mask = im_mask
model_inputs.update({
'position_ids': position_ids,
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
'im_mask': im_mask,
'infer_mode': infer_mode,
})
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (tuple(
past_state.index_select(0, beam_idx.to(past_state.device))
for past_state in layer_past), )
return reordered_past
def build_inputs(self,
tokenizer,
query: str,
history: List[Tuple[str, str]] = [],
meta_instruction=''):
prompt = ''
if meta_instruction:
prompt += f"""<s>[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n"""
else:
prompt += '<s>'
for record in history:
prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n"""
prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n"""
return tokenizer([prompt], return_tensors='pt')
|