|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch InternLMXComposer2 model.""" |
|
import os |
|
import re |
|
import copy |
|
import queue |
|
import threading |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from PIL import Image |
|
import numpy as np |
|
import random |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from torchvision import transforms |
|
from torchvision.transforms.functional import InterpolationMode |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from transformers.utils import (add_start_docstrings_to_model_forward, |
|
replace_return_docstrings) |
|
from transformers import StoppingCriteria, StoppingCriteriaList |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed |
|
try: |
|
from transformers.generation.streamers import BaseStreamer |
|
except: |
|
BaseStreamer = None |
|
|
|
import torchvision.transforms as transforms |
|
from torchvision.transforms.functional import InterpolationMode |
|
|
|
from .build_mlp import build_vision_projector, build_vision_tower |
|
from .ixc_utils import Image_transform, Video_transform, load_video, frame2img, get_font |
|
from .configuration_internlm_xcomposer2 import InternLMXcomposer2Config |
|
from .modeling_internlm2 import (InternLM2_INPUTS_DOCSTRING, InternLM2Model, |
|
InternLM2PreTrainedModel) |
|
|
|
_CONFIG_FOR_DOC = 'InternLMXcomposer2Config' |
|
|
|
image_extensions = {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp'} |
|
video_extensions = {'.mp4', '.avi', '.mkv', '.mov', '.wmv'} |
|
|
|
class StoppingCriteriaSub(StoppingCriteria): |
|
|
|
def __init__(self, stops=[], encounters=1): |
|
super().__init__() |
|
self.stops = stops |
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor): |
|
for stop in self.stops: |
|
if torch.all((stop == input_ids[0][-len(stop):])).item(): |
|
return True |
|
return False |
|
|
|
|
|
def get_stopping_criteria(stop_words_ids): |
|
stop_words_ids = [torch.tensor([i]).cuda() for i in stop_words_ids] |
|
stopping_criteria = StoppingCriteriaList( |
|
[StoppingCriteriaSub(stops=stop_words_ids)]) |
|
return stopping_criteria |
|
|
|
def set_random_seed(seed, set_cudnn=False): |
|
"""Set the random seed for reproducibility. |
|
|
|
Parameters: |
|
seed (int): The seed to use for generating random numbers. |
|
""" |
|
torch.manual_seed(seed) |
|
if torch.cuda.is_available(): |
|
torch.cuda.manual_seed_all(seed) |
|
np.random.seed(seed) |
|
random.seed(seed) |
|
if set_cudnn and torch.backends.cudnn.is_available(): |
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = False |
|
|
|
class InternLMXComposer2ForCausalLM(InternLM2PreTrainedModel): |
|
_auto_class = 'AutoModelForCausalLM' |
|
|
|
_tied_weights_keys = ['output.weight'] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = InternLM2Model(config) |
|
self.vocab_size = config.vocab_size |
|
self.output = nn.Linear( |
|
config.hidden_size, config.vocab_size, bias=False) |
|
self.tokenizer = None |
|
self.hd_num = 25 |
|
self.font = get_font() |
|
|
|
self.max_length = config.max_length |
|
print(f'Set max length to {self.max_length}') |
|
|
|
self.post_init() |
|
self.plora_glb_GN = nn.Parameter(torch.zeros([1, 1, 4096])) |
|
self.plora_sub_GN = nn.Parameter(torch.zeros([1, 1, 1, 4096])) |
|
|
|
self.vit = build_vision_tower() |
|
self.vision_proj = build_vision_projector() |
|
|
|
self.vis_processor = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), |
|
(0.26862954, 0.26130258, 0.27577711)), |
|
]) |
|
|
|
|
|
|
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, InternLM2Model): |
|
module.gradient_checkpointing = value |
|
if value: |
|
self.vit.vision_tower.vision_model.encoder.gradient_checkpointing = value |
|
|
|
def get_input_embeddings(self): |
|
return self.model.tok_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.tok_embeddings = value |
|
|
|
def get_output_embeddings(self): |
|
return self.output |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.output = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def encode_text(self, text, add_special_tokens=False): |
|
token = self.tokenizer( |
|
text, return_tensors='pt', |
|
add_special_tokens=add_special_tokens).input_ids.to(self.device) |
|
embs = self.model.tok_embeddings(token) |
|
return embs |
|
|
|
def encode_img(self, image, hd_num=25): |
|
if image is None: |
|
return None |
|
if isinstance(image, str): |
|
_, ext = os.path.splitext(image) |
|
if ext.lower() in image_extensions: |
|
image = Image.open(image).convert('RGB') |
|
image = Image_transform(image, hd_num = hd_num) |
|
elif ext.lower() in video_extensions: |
|
image = load_video(image) |
|
image = frame2img(image, self.font) |
|
image = Video_transform(image, hd_num = hd_num) |
|
else: |
|
print ('Unknow input format', image) |
|
return None |
|
image = self.vis_processor(image).unsqueeze(0).to(self.device) |
|
else: |
|
assert isinstance(image, torch.Tensor) |
|
|
|
img_embeds, atts_img, img_target = self.img2emb(image) |
|
return img_embeds |
|
|
|
def img2emb(self, image): |
|
img_embeds, img_split = self.vit([image], |
|
self.plora_glb_GN, self.plora_sub_GN) |
|
if len(img_split) > 1: |
|
print ('Batch Size >1 is not supported.') |
|
assert 0 |
|
|
|
img_embeds = self.vision_proj(img_embeds) |
|
atts_img = torch.ones( |
|
img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device) |
|
|
|
img_target = torch.ones( |
|
img_embeds.size()[:2], dtype=torch.long).to( |
|
img_embeds.device) * -100 |
|
|
|
return img_embeds, atts_img, img_target |
|
|
|
def prompt_wrap(self, img_embeds, prompt): |
|
batch_size = img_embeds.shape[0] |
|
p_before, p_after = prompt.split('<ImageHere>') |
|
p_before_tokens = self.tokenizer( |
|
p_before, return_tensors='pt', |
|
add_special_tokens=True).to(img_embeds.device) |
|
|
|
p_before_embeds = self.model.tok_embeddings( |
|
p_before_tokens.input_ids).expand(batch_size, -1, -1) |
|
wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds], dim=1) |
|
|
|
wrapped_atts_img = torch.ones( |
|
wrapped_img_embeds.size()[:-1], |
|
dtype=torch.long).to(img_embeds.device) |
|
|
|
wrapped_target = torch.ones( |
|
batch_size, wrapped_img_embeds.shape[1], dtype=torch.long).to( |
|
img_embeds.device) * -100 |
|
|
|
return wrapped_img_embeds, wrapped_atts_img, wrapped_target |
|
|
|
def text2emb(self, text, add_special_tokens=False): |
|
to_regress_tokens = self.tokenizer( |
|
text, |
|
return_tensors='pt', |
|
padding='longest', |
|
truncation=True, |
|
max_length=self.max_length, |
|
add_special_tokens=add_special_tokens |
|
).to(self.device) |
|
|
|
targets = self.mask_human_targets(to_regress_tokens.input_ids) |
|
targets = targets.to(self.device) |
|
return to_regress_tokens, targets |
|
|
|
def interleav_wrap_chat(self, query, image, history = [], meta_instruction='', max_length=16384, hd_num=24): |
|
self.max_length = max_length |
|
prompt = '' |
|
if meta_instruction: |
|
prompt += f"""[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n""" |
|
for record in history: |
|
prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n""" |
|
prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n""" |
|
|
|
image_nums = len(image) |
|
if image_nums == 1 and prompt.find('<ImageHere>') == -1: |
|
|
|
prompt = '<ImageHere>' + prompt |
|
|
|
parts = prompt.split('<ImageHere>') |
|
wrap_embeds, wrap_im_mask = [], [] |
|
temp_len = 0 |
|
need_bos = True |
|
|
|
if len(parts) != image_nums + 1: |
|
|
|
print ('Waring! The image number != given position!') |
|
if image_nums > 1: |
|
hd_num = 6 |
|
else: |
|
hu_num = hd_num |
|
for idx, part in enumerate(parts): |
|
if need_bos or len(part) > 0: |
|
part_tokens = self.tokenizer( |
|
part, |
|
return_tensors='pt', |
|
padding='longest', |
|
add_special_tokens=need_bos).to(self.device) |
|
if need_bos: |
|
need_bos = False |
|
|
|
part_embeds = self.model.tok_embeddings( |
|
part_tokens.input_ids) |
|
wrap_embeds.append(part_embeds) |
|
wrap_im_mask.append(torch.zeros(part_embeds.shape[:2])) |
|
temp_len += part_embeds.shape[1] |
|
if idx < image_nums: |
|
img = self.encode_img(image[idx], hd_num) |
|
wrap_embeds.append(img) |
|
wrap_im_mask.append(torch.ones(img.shape[:2])) |
|
temp_len += img.shape[1] |
|
|
|
if temp_len > self.max_length: |
|
break |
|
|
|
wrap_embeds = torch.cat(wrap_embeds, dim=1) |
|
wrap_im_mask = torch.cat(wrap_im_mask, dim=1) |
|
wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device) |
|
wrap_im_mask = wrap_im_mask[:, :self.max_length].to(self.device).bool() |
|
inputs = { |
|
'inputs_embeds': wrap_embeds |
|
} |
|
return inputs, wrap_im_mask, temp_len |
|
|
|
def interleav_wrap(self, img_list, text_list, image_nums): |
|
temp_embeds = [] |
|
temp_im_mask = [] |
|
temp_tars = [] |
|
|
|
|
|
img_embeds, img_split = self.vit(img_list, self.plora_glb_GN, self.plora_sub_GN) |
|
img_embeds = self.vision_proj(img_embeds) |
|
|
|
text_list = text_list[0] |
|
for idx, text in enumerate(text_list): |
|
image_num = image_nums[idx] |
|
im_id = int(np.sum(image_nums[:idx])) |
|
images = [] |
|
for i in range(image_nums[idx]): |
|
st = int(np.sum(img_split[:im_id + i])) |
|
sp = img_split[im_id + i] |
|
temp_img = img_embeds[:, st:st+sp] |
|
images.append(temp_img) |
|
atts_img = torch.ones((len(images), images[0].shape[1]), dtype=torch.long).to(self.device) |
|
img_target = torch.ones( |
|
(len(images), images[0].shape[1]), dtype=torch.long).to( |
|
self.device) * -100 |
|
|
|
if image_num == 1 and text.find('<ImageHere>') == -1: |
|
text = '<ImageHere>' + text |
|
parts = text.split('<ImageHere>') |
|
|
|
wrap_tokens, wrap_embeds, wrap_im_mask = [], [], [] |
|
temp_len = 0 |
|
need_bos = True |
|
for idx, part in enumerate(parts): |
|
if need_bos or len(part) > 0: |
|
part_tokens = self.tokenizer(part, return_tensors='pt', padding='longest', |
|
add_special_tokens=need_bos).to(self.device) |
|
if need_bos: |
|
need_bos = False |
|
wrap_tokens.append(part_tokens.input_ids) |
|
part_embeds = self.model.tok_embeddings(part_tokens.input_ids) |
|
wrap_embeds.append(part_embeds) |
|
wrap_im_mask.append(torch.zeros(part_embeds.shape[:2]).to(self.device)) |
|
temp_len += part_embeds.shape[1] |
|
if idx < image_num: |
|
wrap_embeds.append(images[idx]) |
|
wrap_token = torch.ones(images[idx].shape[:2], dtype=torch.long).to(self.device) * -100 |
|
wrap_tokens.append(wrap_token) |
|
wrap_im_mask.append(torch.ones(images[idx].shape[:2]).to(self.device)) |
|
temp_len += images[idx].shape[1] |
|
if temp_len > self.max_length: |
|
break |
|
wrap_tokens = torch.cat(wrap_tokens, dim=1) |
|
wrap_embeds = torch.cat(wrap_embeds, dim=1) |
|
wrap_im_mask = torch.cat(wrap_im_mask, dim=1) |
|
|
|
wrap_target = self.mask_human_targets(wrap_tokens).to(self.device) |
|
|
|
temp_embeds.append(wrap_embeds) |
|
temp_im_mask.append(wrap_im_mask) |
|
temp_tars.append(wrap_target) |
|
|
|
temp_max_len = np.max([i.shape[1] for i in temp_embeds]) |
|
temp_max_len = min(temp_max_len, self.max_length) |
|
|
|
final_input, final_atts, final_tars, final_mask = [], [], [], [] |
|
pad = torch.ones([1, 1]) * self.tokenizer.pad_token_id |
|
pad = pad.long().to(self.device) |
|
pad_emb = self.model.tok_embeddings(pad) |
|
|
|
for idx in range(len(temp_embeds)): |
|
temp_len = temp_embeds[idx].shape[1] |
|
if temp_len >= temp_max_len: |
|
final_input.append(temp_embeds[idx][:, :temp_max_len]) |
|
final_atts.append(torch.ones(1, temp_max_len).to(wrap_target.dtype).to(self.device)) |
|
final_tars.append(temp_tars[idx][:, :temp_max_len]) |
|
final_mask.append(temp_im_mask[idx][:, :temp_max_len]) |
|
else: |
|
final_input.append(torch.cat([temp_embeds[idx], pad_emb.repeat(1, temp_max_len-temp_len, 1)], dim=1)) |
|
final_atts.append(torch.cat([torch.ones(1, temp_len), torch.zeros(1, temp_max_len-temp_len)], dim=1).to(wrap_target.dtype).to(self.device)) |
|
final_tars.append(torch.cat([temp_tars[idx], (torch.ones(1, temp_max_len-temp_len)*-100).to(wrap_target.dtype).to(self.device)], dim=1)) |
|
final_mask.append(torch.cat([temp_im_mask[idx], (torch.zeros(1, temp_max_len-temp_len)).to(wrap_target.dtype).to(self.device)], dim=1)) |
|
|
|
inputs_embeds = torch.cat(final_input, dim=0) |
|
attention_mask = torch.cat(final_atts, dim=0) |
|
targets = torch.cat(final_tars, dim=0) |
|
im_mask = torch.cat(final_mask, dim=0) |
|
|
|
return inputs_embeds, attention_mask, targets, im_mask |
|
|
|
def mask_human_targets(self, input_ids, pure=False): |
|
target_batch = [] |
|
for bs in range(input_ids.shape[0]): |
|
ids = input_ids[bs] |
|
targets = copy.deepcopy(ids) |
|
end_count = 0 |
|
last_eoa = 0 |
|
for i, temp_id in enumerate(ids): |
|
if temp_id == 92542: |
|
if end_count % 2 == 0: |
|
targets[last_eoa:i + 6] = -100 |
|
else: |
|
last_eoa = i + 1 |
|
end_count += 1 |
|
|
|
elif temp_id == 2: |
|
|
|
targets[i + 1:] = -100 |
|
break |
|
|
|
if temp_id != 2 and end_count % 2 == 0: |
|
|
|
targets[last_eoa + 1:] = -100 |
|
target_batch.append(targets.unsqueeze(0)) |
|
target_batch = torch.cat(target_batch, dim=0) |
|
return target_batch |
|
|
|
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) |
|
@replace_return_docstrings( |
|
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward(self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
Returns: |
|
""" |
|
|
|
samples = kwargs.get('samples', None) |
|
if samples: |
|
infer_mode = samples.get('infer_mode', 'base') |
|
if samples['data_type'][0] == 'text': |
|
has_img = False |
|
elif samples['data_type'][0] == 'multi': |
|
has_img = True |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
text = samples['text_input'] |
|
|
|
if has_img: |
|
image = samples['image'][0] |
|
bs = len(samples['text_input'][0]) |
|
image_nums = [] |
|
temp_image = [] |
|
for im in image: |
|
if type(im) is list: |
|
image_nums.append(len(im)) |
|
temp_image.extend(im) |
|
else: |
|
image_nums.append(1) |
|
temp_image.append(im) |
|
image = temp_image |
|
assert type(image) is list and len(image_nums) == bs |
|
|
|
to_regress_embeds, attention_mask, targets, im_mask = self.interleav_wrap( |
|
image, text, image_nums) |
|
else: |
|
to_regress_tokens, targets = self.text2emb( |
|
text, add_special_tokens=True) |
|
to_regress_embeds = self.model.tok_embeddings( |
|
to_regress_tokens.input_ids) |
|
attention_mask = to_regress_tokens.attention_mask |
|
im_mask = torch.zeros(to_regress_embeds.shape[:2]).cuda() |
|
|
|
inputs_embeds = to_regress_embeds[:, :self.max_length] |
|
attention_mask = attention_mask[:, :self.max_length] |
|
targets = targets[:, :self.max_length] |
|
im_mask = im_mask[:, :self.max_length].bool() |
|
labels = targets |
|
else: |
|
im_mask = kwargs.get('im_mask', None) |
|
infer_mode = kwargs.get('infer_mode', 'base') |
|
if im_mask is None and inputs_embeds is not None: |
|
im_mask = torch.zeros(inputs_embeds.shape[:2]).to( |
|
inputs_embeds.device) |
|
im_mask = im_mask.bool() |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else |
|
self.config.output_hidden_states) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
im_mask=im_mask, |
|
infer_mode=infer_mode, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.output(hidden_states) |
|
logits = logits.float() |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits, ) + outputs[1:] |
|
return (loss, ) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation(self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
im_mask=None, |
|
infer_mode='base', |
|
**kwargs): |
|
if past_key_values is not None: |
|
past_length = past_key_values[0][0].shape[2] |
|
|
|
|
|
if input_ids.shape[1] > past_length: |
|
remove_prefix_length = past_length |
|
else: |
|
|
|
remove_prefix_length = input_ids.shape[1] - 1 |
|
|
|
input_ids = input_ids[:, remove_prefix_length:] |
|
|
|
position_ids = kwargs.get('position_ids', None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1]:] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {'inputs_embeds': inputs_embeds} |
|
else: |
|
model_inputs = {'input_ids': input_ids} |
|
|
|
im_mask = im_mask |
|
|
|
model_inputs.update({ |
|
'position_ids': position_ids, |
|
'past_key_values': past_key_values, |
|
'use_cache': kwargs.get('use_cache'), |
|
'attention_mask': attention_mask, |
|
'im_mask': im_mask, |
|
'infer_mode': infer_mode, |
|
}) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += (tuple( |
|
past_state.index_select(0, beam_idx.to(past_state.device)) |
|
for past_state in layer_past), ) |
|
return reordered_past |
|
|
|
def build_inputs(self, |
|
tokenizer, |
|
query: str, |
|
history: List[Tuple[str, str]] = [], |
|
meta_instruction=''): |
|
prompt = '' |
|
if meta_instruction: |
|
prompt += f"""<s>[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n""" |
|
else: |
|
prompt += '<s>' |
|
for record in history: |
|
prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n""" |
|
prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n""" |
|
return tokenizer([prompt], return_tensors='pt') |
|
|
|
@torch.no_grad() |
|
def chat( |
|
self, |
|
tokenizer, |
|
query: str, |
|
image: List[Tuple[str, str]] = [], |
|
hd_num: int = 24, |
|
history: List[Tuple[str, str]] = [], |
|
streamer: Optional[BaseStreamer] = None, |
|
max_new_tokens: int = 1024, |
|
do_sample: bool = True, |
|
num_beams: int = 1, |
|
temperature: float = 1.0, |
|
top_p: float = 0.8, |
|
repetition_penalty: float=1.005, |
|
infer_mode: str = 'base', |
|
use_meta: bool = False, |
|
meta_instruction: |
|
str = 'You are an AI assistant whose name is InternLM-XComposer (浦语·灵笔).\n' |
|
'- InternLM-XComposer (浦语·灵笔) is a multi-modality conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n' |
|
'- InternLM-XComposer (浦语·灵笔) can understand and communicate fluently in the language chosen by the user such as English and 中文.\n' |
|
'- InternLM-XComposer (浦语·灵笔) is capable of comprehending and articulating responses effectively based on the provided image.', |
|
**kwargs, |
|
): |
|
|
|
if not use_meta: |
|
meta_instruction = '' |
|
if image is None: |
|
inputs = self.build_inputs(tokenizer, query, history, meta_instruction) |
|
im_mask = torch.zeros(inputs['input_ids'].shape[:2]).cuda().bool() |
|
else: |
|
inputs, im_mask, _ = self.interleav_wrap_chat(query, image, history=history, meta_instruction=meta_instruction, hd_num=hd_num) |
|
inputs = { |
|
k: v.to(self.device) |
|
for k, v in inputs.items() if torch.is_tensor(v) |
|
} |
|
|
|
eos_token_id = [ |
|
tokenizer.eos_token_id, |
|
tokenizer.convert_tokens_to_ids(['[UNUSED_TOKEN_145]'])[0] |
|
] |
|
outputs = self.generate( |
|
**inputs, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
num_beams=num_beams, |
|
do_sample=do_sample, |
|
temperature=temperature, |
|
top_p=top_p, |
|
eos_token_id=eos_token_id, |
|
repetition_penalty=repetition_penalty, |
|
im_mask=im_mask, |
|
infer_mode=infer_mode, |
|
**kwargs, |
|
) |
|
if image is None: |
|
outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):] |
|
else: |
|
outputs = outputs[0].cpu().tolist() |
|
response = tokenizer.decode(outputs, skip_special_tokens=True) |
|
response = response.split('[UNUSED_TOKEN_145]')[0] |
|
history = history + [(query, response)] |
|
return response, history |
|
|