DLight1551's picture
update
e96e206
import math
import re
import torch
import torch.nn as nn
from transformers import CLIPVisionModel
def build_vision_tower():
vision_tower = 'openai/clip-vit-large-patch14-336'
return CLIPVisionTower(vision_tower)
def build_vision_projector():
projector_type = 'mlp2x_gelu'
mm_hidden_size = 1024
hidden_size = 4096
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
if mlp_gelu_match:
mlp_depth = int(mlp_gelu_match.group(1))
modules = [nn.Linear(mm_hidden_size, hidden_size)]
for _ in range(1, mlp_depth):
modules.append(nn.GELU())
modules.append(nn.Linear(hidden_size, hidden_size))
return nn.Sequential(*modules)
if projector_type == 'identity':
return IdentityMap()
raise ValueError(f'Unknown projector type: {projector_type}')
class IdentityMap(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, *args, **kwargs):
return x
@property
def config(self):
return {'mm_projector_type': 'identity'}
class CLIPVisionTower(nn.Module):
def __init__(self, vision_tower):
super().__init__()
self.is_loaded = False
self.is_resize_pos = False
self.vision_tower_name = vision_tower
self.select_layer = -1
self.select_feature = 'patch'
self.load_model()
self.resize_pos()
def load_model(self):
self.vision_tower = CLIPVisionModel.from_pretrained(
self.vision_tower_name)
self.vision_tower.requires_grad_(False)
self.is_loaded = True
def resize_pos(self):
pos_embed_checkpoint = self.vision_tower.vision_model.embeddings.position_embedding.weight
pos_embed_checkpoint = pos_embed_checkpoint.unsqueeze(0)
orig_size = 24
new_size = 16
if pos_embed_checkpoint.shape[1] == new_size**2 + 1:
self.is_resize_pos = True
else:
embedding_size = pos_embed_checkpoint.shape[-1]
num_extra_tokens = 1
new_num = new_size**2 + num_extra_tokens
print('Position interpolate from %dx%d to %dx%d' %
(orig_size, orig_size, new_size, new_size))
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size,
embedding_size).permute(
0, 3, 1, 2).float()
pos_tokens = torch.nn.functional.interpolate(
pos_tokens,
size=(new_size, new_size),
mode='bicubic',
align_corners=False)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2).half()
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
new_pos_embed = new_pos_embed.squeeze(0)
self.vision_tower.vision_model.embeddings.position_embedding = torch.nn.Embedding(
new_num, 1024)
self.vision_tower.vision_model.embeddings.position_embedding.weight = torch.nn.Parameter(
new_pos_embed.to(pos_embed_checkpoint.dtype))
self.vision_tower.vision_model.embeddings.position_ids = torch.arange(
new_num).expand((1, -1))
self.is_resize_pos = True
def feature_select(self, image_forward_outs):
image_features = image_forward_outs.hidden_states[self.select_layer]
if self.select_feature == 'patch':
image_features = image_features[:, 1:]
elif self.select_feature == 'cls_patch':
image_features = image_features
else:
raise ValueError(
f'Unexpected select feature: {self.select_feature}')
return image_features
def forward(self, images):
if not self.is_loaded:
self.load_model()
if type(images) is list:
image_features = []
for image in images:
image_forward_out = self.vision_tower(
image.to(device=self.device,
dtype=self.dtype).unsqueeze(0),
output_hidden_states=True)
image_feature = self.feature_select(image_forward_out).to(
image.dtype)
image_features.append(image_feature)
else:
image_forward_outs = self.vision_tower(
images.to(device=self.device, dtype=self.dtype),
output_hidden_states=True)
image_features = self.feature_select(image_forward_outs).to(
images.dtype)
return image_features
@property
def dummy_feature(self):
return torch.zeros(
1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
return self.vision_tower.dtype
@property
def device(self):
return self.vision_tower.device
@property
def config(self):
if self.is_loaded:
return self.vision_tower.config
else:
return self.cfg_only
@property
def hidden_size(self):
return self.config.hidden_size
@property
def num_patches(self):
return (self.config.image_size // self.config.patch_size)**2
class PLoRA(nn.Module):
def __init__(self,
in_features: int,
out_features: int,
bias: bool = True,
device=None,
dtype=None,
lora_r=8,
lora_alpha=16,
lora_dropout=0.05,
lora_len=0,
**kwargs) -> None:
super().__init__()
self.lora_r = lora_r
self.lora_alpha = lora_alpha
self.lora_len = lora_len
if lora_dropout > 0.:
self.lora_dropout = nn.Dropout(p=lora_dropout)
else:
self.lora_dropout = lambda x: x
self.lora_scaling = self.lora_alpha / self.lora_r
self.linear = nn.Linear(in_features, out_features, bias=bias, device=device, dtype=dtype)
self.Plora_A = nn.Linear(
in_features, self.lora_r, bias=False, device=device, dtype=dtype)
self.Plora_B = nn.Linear(
self.lora_r, out_features, bias=False, device=device, dtype=dtype)
self.reset_parameters()
def reset_parameters(self):
if hasattr(self, 'lora_A'):
# initialize A the same way as the default for nn.Linear and B to zero
nn.init.kaiming_uniform_(self.lora_A.weight, a=math.sqrt(5))
nn.init.zeros_(self.lora_B.weight)
def forward(self, x, im_mask=None):
res = self.linear(x)
if im_mask is not None:
if torch.sum(im_mask) > 0:
part_x = x[im_mask]
res[im_mask] += self.Plora_B(
self.Plora_A(
self.lora_dropout(part_x))) * self.lora_scaling
else:
part_x = x[:, :1]
res[:, :1] += self.Plora_B(
self.Plora_A(self.lora_dropout(part_x))) * 0
return res