{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "pdcMxVGEA9Cd" }, "source": [ "# **Fine-tuning for Image Classification with 🤗 Optimum Graphcore**\n", "\n", "This notebook shows how to fine-tune any pretrained Vision model for Image Classification on an IPU. The idea is to add a randomly initialized classification head on top of a pre-trained encoder, and fine-tune the model altogether on a labeled dataset.\n", "\n", "## ImageFolder\n", "\n", "This notebook leverages the [ImageFolder](https://huggingface.co./docs/datasets/v2.0.0/en/image_process#imagefolder) feature to easily run the notebook on a custom dataset (namely, [EuroSAT](https://github.com/phelber/EuroSAT) in this tutorial). You can either load a `Dataset` from local folders or from local/remote files, like zip or tar.\n", "\n", "## Any model\n", "\n", "This notebook is built to run on any image classification dataset with any vision model checkpoint from the [Model Hub](https://huggingface.co./) as long as that model has a version with a Image Classification head and is supported by [🤗 Optimum Graphcore](https://github.com/huggingface/optimum-graphcore). The IPU config files of the supported models are available in Graphcore's [Hugging Face account](https://huggingface.co./Graphcore). You can also create your own IPU config file locally. \n", "Currently supported models:\n", "* [ViT](https://huggingface.co./docs/transformers/model_doc/vit#transformers.ViTForImageClassification)\n", "* [ConvNeXT](https://huggingface.co./docs/transformers/master/en/model_doc/convnext#transformers.ConvNextForImageClassification)\n", "\n", "---\n", "\n", "In this notebook, we are using both data parallelism and pipeline parallelism (see this [tutorial](https://github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/efficient_data_loading) for more). Therefore the global batch size, which is the actual number of samples used for the weight update, is determined with three factors:\n", "- global batch size = micro batch size * gradient accumulation steps * replication factor\n", "\n", "and replication factor is determined by `pod_type`, which will be used as a key to select the replication factor from a dictionary defined in the IPU config file. For example, the dictionary in the IPU config file [Graphcore/roberta-base-ipu](https://huggingface.co./Graphcore/roberta-base-ipu/blob/main/ipu_config.json) looks like this:\n", "- \"replication_factor\": {\"pod4\": 1, \"pod8\": 2, \"pod16\": 4, \"pod32\": 8, \"pod64\": 16, \"default\": 1}\n", "\n", "Depending on you model and the pod machine you are using, you might need to adjust these three batch-size-related arguments.\n", "\n", "In this notebook, we'll fine-tune from the [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) checkpoint, but note that there are many more available on the [hub](https://huggingface.co./models?other=vision).\n" ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "execution": { "iopub.execute_input": "2023-06-21T22:59:29.826122Z", "iopub.status.busy": "2023-06-21T22:59:29.825859Z", "iopub.status.idle": "2023-06-21T22:59:29.829472Z", "shell.execute_reply": "2023-06-21T22:59:29.828874Z", "shell.execute_reply.started": "2023-06-21T22:59:29.826099Z" }, "id": "5WMEawzyCEyG" }, "outputs": [], "source": [ "model_checkpoint = \"internetoftim/dinov2-base\" # pre-trained model from which to fine-tune\n", "\n", "ipu_config_name = \"Graphcore/vit-base-ipu\" # config specific to the IPU\n", "micro_batch_size = 1 # micro batch size for training and evaluation\n", "gradient_accumulation_steps = 32" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Values for machine size and cache directories can be configured through environment variables or directly in the notebook:" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "execution": { "iopub.execute_input": "2023-06-21T22:41:12.016450Z", "iopub.status.busy": "2023-06-21T22:41:12.016207Z", "iopub.status.idle": "2023-06-21T22:41:12.020103Z", "shell.execute_reply": "2023-06-21T22:41:12.019458Z", "shell.execute_reply.started": "2023-06-21T22:41:12.016431Z" } }, "outputs": [], "source": [ "import os\n", "\n", "pod_type = os.getenv(\"GRAPHCORE_POD_TYPE\", \"pod4\")\n", "executable_cache_dir = os.getenv(\"POPLAR_EXECUTABLE_CACHE_DIR\", \"/tmp/exe_cache/\") + \"/image_classification\"\n", "dataset_dir = os.getenv(\"DATASETS_DIR\", \"./\")" ] }, { "cell_type": "markdown", "metadata": { "id": "NlArTG8KChJf" }, "source": [ "First of all, make sure your environment has installed the latest version of [🤗 Optimum Graphcore](https://github.com/huggingface/optimum-graphcore) and any packages we will need." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "In order to improve usability and support for future users, Graphcore would like to collect information about the\n", "applications and code being run in this notebook. The following information will be anonymised before being sent to Graphcore:\n", "\n", "- User progression through the notebook\n", "- Notebook details: number of cells, code being run and the output of the cells\n", "- Environment details\n", "\n", "You can disable logging at any time by running `%unload_ext gc_logger` from any cell.\n" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "execution": { "iopub.execute_input": "2023-06-21T22:41:17.677448Z", "iopub.status.busy": "2023-06-21T22:41:17.677193Z", "iopub.status.idle": "2023-06-21T22:41:33.660336Z", "shell.execute_reply": "2023-06-21T22:41:33.659538Z", "shell.execute_reply.started": "2023-06-21T22:41:17.677428Z" }, "id": "L1532RVbJgQV", "outputId": "1d92a15b-0efd-4b09-b006-56384c64943b" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", "\u001b[0mNote: you may need to restart the kernel to use updated packages.\n", "Collecting examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable\n", " Cloning https://github.com/graphcore/examples-utils (to revision latest_stable) to /tmp/pip-install-680s9a9o/examples-utils_a25ea687dfad42019db5c7a45ac6126d\n", " Running command git clone --filter=blob:none --quiet https://github.com/graphcore/examples-utils /tmp/pip-install-680s9a9o/examples-utils_a25ea687dfad42019db5c7a45ac6126d\n", " Running command git checkout -q 40c62e6646db8f9d60d1707a61204c95a15c7ccb\n", " Resolved https://github.com/graphcore/examples-utils to commit 40c62e6646db8f9d60d1707a61204c95a15c7ccb\n", " Preparing metadata (setup.py) ... \u001b[?25ldone\n", "\u001b[?25hRequirement already satisfied: awscli>=1.24.10 in /usr/local/lib/python3.8/dist-packages (from examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (1.27.143)\n", "Requirement already satisfied: boto3>=1.26 in /usr/local/lib/python3.8/dist-packages (from examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (1.26.143)\n", "Requirement already satisfied: cppimport>=22.07.17 in /usr/local/lib/python3.8/dist-packages (from examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (22.8.2)\n", "Requirement already satisfied: filelock>=3.9.0 in /usr/local/lib/python3.8/dist-packages (from examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (3.12.2)\n", "Requirement already satisfied: gitpython>=3.1 in /usr/local/lib/python3.8/dist-packages (from examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (3.1.31)\n", "Requirement already satisfied: ipynbname>=2021.3.2 in /usr/local/lib/python3.8/dist-packages (from examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (2023.1.0.0)\n", "Requirement already satisfied: nbformat>=5.7.3 in /usr/local/lib/python3.8/dist-packages (from examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (5.9.0)\n", "Requirement already satisfied: psutil>=5.7.0 in /usr/local/lib/python3.8/dist-packages (from examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (5.9.5)\n", "Requirement already satisfied: pyyaml>=5.4.1 in /usr/local/lib/python3.8/dist-packages (from examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (5.4.1)\n", "Requirement already satisfied: simple-parsing==0.0.19.post1 in /usr/local/lib/python3.8/dist-packages (from examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (0.0.19.post1)\n", "Requirement already satisfied: typing-inspect in /usr/local/lib/python3.8/dist-packages (from simple-parsing==0.0.19.post1->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (0.9.0)\n", "Requirement already satisfied: botocore==1.29.143 in /usr/local/lib/python3.8/dist-packages (from awscli>=1.24.10->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (1.29.143)\n", "Requirement already satisfied: docutils<0.17,>=0.10 in /usr/local/lib/python3.8/dist-packages (from awscli>=1.24.10->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (0.16)\n", "Requirement already satisfied: s3transfer<0.7.0,>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from awscli>=1.24.10->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (0.6.1)\n", "Requirement already satisfied: colorama<0.4.5,>=0.2.5 in /usr/local/lib/python3.8/dist-packages (from awscli>=1.24.10->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (0.4.4)\n", "Requirement already satisfied: rsa<4.8,>=3.1.2 in /usr/local/lib/python3.8/dist-packages (from awscli>=1.24.10->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (4.7.2)\n", "Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /usr/local/lib/python3.8/dist-packages (from botocore==1.29.143->awscli>=1.24.10->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (1.0.1)\n", "Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /usr/local/lib/python3.8/dist-packages (from botocore==1.29.143->awscli>=1.24.10->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (2.8.2)\n", "Requirement already satisfied: urllib3<1.27,>=1.25.4 in /usr/lib/python3/dist-packages (from botocore==1.29.143->awscli>=1.24.10->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (1.25.8)\n", "Requirement already satisfied: mako in /usr/local/lib/python3.8/dist-packages (from cppimport>=22.07.17->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (1.2.4)\n", "Requirement already satisfied: pybind11 in /usr/local/lib/python3.8/dist-packages (from cppimport>=22.07.17->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (2.10.4)\n", "Requirement already satisfied: gitdb<5,>=4.0.1 in /usr/local/lib/python3.8/dist-packages (from gitpython>=3.1->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (4.0.10)\n", "Requirement already satisfied: ipykernel in /usr/local/lib/python3.8/dist-packages (from ipynbname>=2021.3.2->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (5.5.6)\n", "Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.7.3->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (2.17.1)\n", "Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.7.3->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (4.17.3)\n", "Requirement already satisfied: jupyter-core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.7.3->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (5.3.0)\n", "Requirement already satisfied: traitlets>=5.1 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.7.3->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (5.9.0)\n", "Requirement already satisfied: smmap<6,>=3.0.1 in /usr/local/lib/python3.8/dist-packages (from gitdb<5,>=4.0.1->gitpython>=3.1->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (5.0.0)\n", "Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.7.3->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (23.1.0)\n", "Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.7.3->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (5.12.0)\n", "Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.7.3->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (1.3.10)\n", "Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.7.3->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (0.19.3)\n", "Requirement already satisfied: pyasn1>=0.1.3 in /usr/local/lib/python3.8/dist-packages (from rsa<4.8,>=3.1.2->awscli>=1.24.10->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (0.5.0)\n", "Requirement already satisfied: ipython-genutils in /usr/local/lib/python3.8/dist-packages (from ipykernel->ipynbname>=2021.3.2->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (0.2.0)\n", "Requirement already satisfied: ipython>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from ipykernel->ipynbname>=2021.3.2->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (7.16.3)\n", "Requirement already satisfied: jupyter-client in /usr/local/lib/python3.8/dist-packages (from ipykernel->ipynbname>=2021.3.2->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (8.2.0)\n", "Requirement already satisfied: tornado>=4.2 in /usr/local/lib/python3.8/dist-packages (from ipykernel->ipynbname>=2021.3.2->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (6.3.2)\n", "Requirement already satisfied: platformdirs>=2.5 in /usr/local/lib/python3.8/dist-packages (from jupyter-core->nbformat>=5.7.3->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (3.5.1)\n", "Requirement already satisfied: MarkupSafe>=0.9.2 in /usr/local/lib/python3.8/dist-packages (from mako->cppimport>=22.07.17->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (2.1.2)\n", "Requirement already satisfied: mypy-extensions>=0.3.0 in /usr/local/lib/python3.8/dist-packages (from typing-inspect->simple-parsing==0.0.19.post1->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (1.0.0)\n", "Requirement already satisfied: typing-extensions>=3.7.4 in /usr/local/lib/python3.8/dist-packages (from typing-inspect->simple-parsing==0.0.19.post1->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (4.6.2)\n", "Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat>=5.7.3->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (3.15.0)\n", "Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.8/dist-packages (from ipython>=5.0.0->ipykernel->ipynbname>=2021.3.2->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (67.8.0)\n", "Requirement already satisfied: jedi<=0.17.2,>=0.10 in /usr/local/lib/python3.8/dist-packages (from ipython>=5.0.0->ipykernel->ipynbname>=2021.3.2->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (0.17.2)\n", "Requirement already satisfied: decorator in /usr/local/lib/python3.8/dist-packages (from ipython>=5.0.0->ipykernel->ipynbname>=2021.3.2->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (5.1.1)\n", "Requirement already satisfied: pickleshare in /usr/local/lib/python3.8/dist-packages (from ipython>=5.0.0->ipykernel->ipynbname>=2021.3.2->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (0.7.5)\n", "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.8/dist-packages (from ipython>=5.0.0->ipykernel->ipynbname>=2021.3.2->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (3.0.38)\n", "Requirement already satisfied: pygments in /usr/local/lib/python3.8/dist-packages (from ipython>=5.0.0->ipykernel->ipynbname>=2021.3.2->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (2.15.1)\n", "Requirement already satisfied: backcall in /usr/local/lib/python3.8/dist-packages (from ipython>=5.0.0->ipykernel->ipynbname>=2021.3.2->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (0.2.0)\n", "Requirement already satisfied: pexpect in /usr/local/lib/python3.8/dist-packages (from ipython>=5.0.0->ipykernel->ipynbname>=2021.3.2->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (4.8.0)\n", "Requirement already satisfied: six>=1.5 in /usr/lib/python3/dist-packages (from python-dateutil<3.0.0,>=2.1->botocore==1.29.143->awscli>=1.24.10->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (1.14.0)\n", "Requirement already satisfied: importlib-metadata>=4.8.3 in /usr/local/lib/python3.8/dist-packages (from jupyter-client->ipykernel->ipynbname>=2021.3.2->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (6.6.0)\n", "Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client->ipykernel->ipynbname>=2021.3.2->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (25.1.0)\n", "Requirement already satisfied: parso<0.8.0,>=0.7.0 in /usr/local/lib/python3.8/dist-packages (from jedi<=0.17.2,>=0.10->ipython>=5.0.0->ipykernel->ipynbname>=2021.3.2->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (0.7.1)\n", "Requirement already satisfied: wcwidth in /usr/local/lib/python3.8/dist-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython>=5.0.0->ipykernel->ipynbname>=2021.3.2->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (0.2.6)\n", "Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.8/dist-packages (from pexpect->ipython>=5.0.0->ipykernel->ipynbname>=2021.3.2->examples-utils[common]@ git+https://github.com/graphcore/examples-utils@latest_stable) (0.7.0)\n", "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", "\u001b[0mNote: you may need to restart the kernel to use updated packages.\n", "The gc_logger extension is already loaded. To reload it, use:\n", " %reload_ext gc_logger\n" ] } ], "source": [ "%pip install -q \"optimum-graphcore==0.6.1\" scikit-learn torchvision==0.14.1+cpu -f https://download.pytorch.org/whl/torch_stable.html\n", "%pip install examples-utils[common]@git+https://github.com/graphcore/examples-utils@latest_stable\n", "from examples_utils import notebook_logging\n", "%load_ext gc_logger" ] }, { "cell_type": "markdown", "metadata": { "id": "snZ1tmaOC412" }, "source": [ "If you're opening this notebook locally, make sure your environment has an install from the last version of those libraries.\n", "\n", "To be able to share your model with the community and generate results like the one shown in the picture below via the inference API, there are a few more steps to follow.\n", "\n", "First you have to store your authentication token from the Hugging Face website (sign up [here](https://huggingface.co./join) if you haven't already!) then execute the following cell and input your token:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 386, "referenced_widgets": [ "f1760b8ccf9b4c32977a1e83f3a3af3d", "e276e653c187474dba7e1c4fede10b79", "a6d024d44a6c49eebef7966ef5a836f1", "344c041a34b5458eb1bbb3ea8fa5b315", "18f7dc9f5e6241138534b7cf9aa30adb", "d5e3a1de2a4645639c029a404d04dc1c", "e7e938eb6baf486e829ea5d4734087cf", "730378e114f944908aa06f42bb2faa3d", "f73b5464140d4723b1b3f46796d9b1ca", "16ffe85c44764fa9ad8a31fb21e6432f", "40db3808e98d424cacc5d0fed54b9eaa", "e9bad1a707f0442da6f117fdd2804f72", "a0bac01e342b4793b66d7d4f5bfac2e2", "b447ca05136342d0a167bfb133a353bd", "4dcbcf9b086f452d9d1bc07b4a4cc1d3", "724b578bac3f4b7cb6806ee3c45aff01", "6ca86c47e547426e8a0d4487a786c46c" ] }, "execution": { "iopub.execute_input": "2023-06-21T21:44:37.492165Z", "iopub.status.busy": "2023-06-21T21:44:37.491744Z", "iopub.status.idle": "2023-06-21T21:44:37.717449Z", "shell.execute_reply": "2023-06-21T21:44:37.716929Z", "shell.execute_reply.started": "2023-06-21T21:44:37.492146Z" }, "id": "Bkpk_JPlCww8", "outputId": "d80cb8c7-5382-427b-e90b-bfec7afdc052" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "aa278fd06d734ba184bb23865fe22631", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(HTML(value='
\n" ] }, { "cell_type": "markdown", "metadata": { "id": "mcE455KaG687" }, "source": [ "### Loading the dataset" ] }, { "cell_type": "markdown", "metadata": { "id": "RD_G2KJgG_bU" }, "source": [ "We will use the [🤗 Datasets](https://github.com/huggingface/datasets) library's [ImageFolder](https://huggingface.co./docs/datasets/v2.0.0/en/image_process#imagefolder) feature to download our custom dataset into a DatasetDict.\n", "\n", "In this case, the EuroSAT dataset is hosted remotely, so we provide the `data_files` argument. Alternatively, if you have local folders with images, you can load them using the `data_dir` argument. " ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 250, "referenced_widgets": [ "65ee9c937e37404593bbd78489040d82", "5d2d1f1d210449b895820a81089f6c0b", "6126aa9e8dd343aa9233ac1f2150121b", "c096392e55374751b33105be96d37934", "aba0dcd1eef34146a52c90eb5c3e211c", "db5bdd6de3e74610b61b044c23700daa", "eec1d3b8ea07492d9a4fb06bce7404d2", "d089ec92b52b4b90b7ade4a2b6d7ced4", "706b3ef455424cd5b0f2629d58b5aaa6", "b274626ba7bb4917843c2505e2e642d8", "c869a350dd09430cb3599a1b764abf7c", "7344011c60a44af49dfb435e217ba205", "a9a3933138f04b628d9ec9e0a1b3531b", "07a8dfd811d54c1eaaf8d30df4a15e02", "ac6e0d722fbf4cb98e1beae1d768461d", "73be6beffebe4986b26fd275a549983a", "9824e85405d64dbd8d1c28466cbd5ce2", "a18df3c4ad3d436ca9bb05e7e3700142", "4cbb9fa91c7b480e8152248e339da888", "4122b532a6674fdebc76dbf4bf064e4d", "e046e82af8894041bf83190eda1fdd27", "2953a9b8d7224f249d8fbe6b1eea0043", "2c017c8365c7417f80040637f0576456", "bad41d5acc1741e0a3954363802efb95", "d497d019f02048ed8d8996a7dc024086", "cf7f56acd6a84ab0bbd669ffc68049f1", "711229887a3c44308d99a36b0cfe383c", "9a6de936af954c528cad23494762d985", "6146998af3154b7d9317375018b0b35c", "3423d126316b4895b8350cad294e9ed5", "b47ec013328e427e91d645219ee0b4f3", "b1f48ef2e4774d3991109a3537ce6f95", "2daba079b8ab4a6bb5c9d4e975954913", "b5e61543921d41c1a0fd0bdd32042c30", "6be6e59a99cc4a7a9519f56274eab245", "c31e69612cc949569d72927dc8556167", "84731a7392f34547a8702ce8dae4ffde", "a4cdb122648b434fbc97a70c8ecd2797", "1ae00749a1db45f3a9df07d54ba7b9a2", "e3f9fa06f3254786babef77b69edf5e1", "c9578be641994795aebba19c76e18c7c", "dbc2646034c14ff798611f6a43ecfcb5", "0789ac7948dc47af88cbd4306376fa2a", "33ff92cb74cd45a0b04744e6a0aaa202", "78de59096c0c4f4088248d49d8e945c7", "0ef55f103c7049ffb072be07cbdc3c55", "d3cc200a473f4d05b003159452dc4694", "f558d858617649a683a8249dd93cfb15", "ec72f31db8fd4c209f081e20d43d9f01", "0eed61f5a8244ad0b7b02fdf2f0bc445", "07aba02933d5483c9db8d523957c26da", "2e436c1f1346463fbb4bd4365b91ebb8", "337cdba2a3a542229a2bfaa42cc9dbe4", "8da2a3d279654ff68534ac1ec0e4c94c", "62f3666095fd4f299875d99365fc6d3e", "f8204cbc9e33434e8dae692826092def", "89c3832e2105480bbc80c97683f8a9c6", "9bb0bb71bd3c4218be04f6e0dba884ab", "5466f882ca23480ab8d25a93d938c650", "eaa2e37efec944549715e9f5f12527b0", "4aed4abfe24d492ab793be6a5742c01e", "1ed8401e795b4efda2d6ce57b72aeafb", "150f5046c3224c0d9eff3f8c851b146f", "8a3c971f5628488c83a8cc3685f39e6b", "76bc21ca1ac541a29751df47a6b66eb6", "c48f86ba50054f70922cb6b86fc041c0" ] }, "execution": { "iopub.execute_input": "2023-06-21T21:45:27.784968Z", "iopub.status.busy": "2023-06-21T21:45:27.784720Z", "iopub.status.idle": "2023-06-21T21:45:45.523469Z", "shell.execute_reply": "2023-06-21T21:45:45.522715Z", "shell.execute_reply.started": "2023-06-21T21:45:27.784948Z" }, "id": "Mp9xJcHP2TTP", "outputId": "c672111a-f1c1-4891-e60c-941bbd7751db" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloading and preparing dataset imagefolder/default to /tmp/huggingface_caches/datasets/imagefolder/default-5ef882a072e3a08e/0.0.0/37fbb85cc714a338bea574ac6c7d0b5be5aff46c1862c1989b20e0771199e93f...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9c3aa56bf16e43c8a83f390c95e1d605", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Downloading data files: 0it [00:00, ?it/s]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f978cf674ba34a33a57f3962fbc9da99", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Downloading data files: 0%| | 0/1 [00:00:3: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co./docs/evaluate\n", " metric = load_metric(\"accuracy\")\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "1448fa763e564d86acb516f2adfd6030", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Downloading builder script: 0%| | 0.00/1.65k [00:00,\n", " 'label': 0}" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "example = dataset[\"train\"][10]\n", "example" ] }, { "cell_type": "markdown", "metadata": { "id": "9g0APa21I_Rx" }, "source": [ "Each example consists of an image and a corresponding label. We can also verify this by checking the features of the dataset:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "execution": { "iopub.execute_input": "2023-06-21T21:46:07.953055Z", "iopub.status.busy": "2023-06-21T21:46:07.952811Z", "iopub.status.idle": "2023-06-21T21:46:07.958901Z", "shell.execute_reply": "2023-06-21T21:46:07.958166Z", "shell.execute_reply.started": "2023-06-21T21:46:07.953037Z" }, "id": "BnnL3yHBI7Z3", "outputId": "8d21d2df-af8b-41e1-b70f-a50a132c3415" }, "outputs": [ { "data": { "text/plain": [ "{'image': Image(decode=True, id=None),\n", " 'label': ClassLabel(names=['AnnualCrop', 'Forest', 'HerbaceousVegetation', 'Highway', 'Industrial', 'Pasture', 'PermanentCrop', 'Residential', 'River', 'SeaLake'], id=None)}" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset[\"train\"].features" ] }, { "cell_type": "markdown", "metadata": { "id": "SZ7rLOsAkJ8F" }, "source": [ "The cool thing is that we can directly view the image (as the 'image' field is an [Image feature](https://huggingface.co./docs/datasets/package_reference/main_classes.html#datasets.Image)), as follows:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 81 }, "execution": { "iopub.execute_input": "2023-06-21T21:46:10.755151Z", "iopub.status.busy": "2023-06-21T21:46:10.754903Z", "iopub.status.idle": "2023-06-21T21:46:10.760124Z", "shell.execute_reply": "2023-06-21T21:46:10.759429Z", "shell.execute_reply.started": "2023-06-21T21:46:10.755131Z" }, "id": "32iolZyTkNlI", "outputId": "270751de-fab9-4759-d500-a5d5a62c8d0e" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAEAAAABACAIAAAAlC+aJAAAT+ElEQVR4nG1623YjS7IbgMiiunvGa178vfZP+CNtnzkzs3urJZKVAfghs6ies6wHLV2KZGZcAUTwf/3P/wFAzSQSSCYEIAFAoWzPTJIKAJjo7iRVRZMkmRlDNMGTScKQFInri6QkxUlKChC0AUCSzp7dPXQkAUCmwBosguQAJJkEIA/QgBMnIikF62QAkqy3+P9+mfDXkfBfnkwiCwwY/vsLSf7+fb2s/+tT//WzABhMYnKdPgno359KMgQCgEAjEcH14iQk15XWZ7chKZ5YL4AkSDSJ6ZgUqup6SewGECi2Cu5mQBLRcrUdwMs5STqTJJwEgRwSfRtKh56SRJLRvsRyPsf2b8DSih8ljb4c0omd9TBs4zL8ctacE7WiA7ZVJQnwCpnutrP+ss51+U1jDGBu15HjuG3/F5K015PpmVTQgSKQlUjAMi66e1yuCUGCpCiimXUVkaoKszKDBJSkt/VACdAKXABtI+HKAYmk6HhKA4mT7pbouH2OkgQ6SIhIoZikI8AAgRIoambO6WWIiklIKojkkASAcLw+FXM2EioknSuv/j2cSkpi94qZZQXbWIEFJrZdVWMM2wlti7TdCIEBzm62JQ0KACPEQeBOmKTAEHNOE4i6e6ZIIbY7BUljlRQJTIAABLktkyj6LV4AwkziAkGAhQBIIwBtR3JcoFQB2ohPAGBRcrekdq8SRaE7iRMWXWFJIiemEjsurv+KqootAOe0JCrpKD2UlVQO0B1gW4skmARftldIlkbh94hCVY3k2U4VANshunuXzuWr3/xzlGw7c3CsdGq7DZHKGRUZScWa8S5c2SdBAGAGmR7CAMcxZKQ4QszTz2myJIJMNG0Sg+vFTFCErxKwsxlNsTpmkowiICftM5CjFVT7WaCYMbS7DUeSCLbjNJDZJEbRzK1G0NNJ6FUDyCTuZxKqLI+qUgLAXik8ANgBGlduzphkgSRtvzJhF4DslB0JKwYSIALLRGZgO1iuAOBuXK0NYK6GF2m/oTO7xZy7VIIUr0xbPk9CEOGY7vXqdaBCluNWMDhX93G861TWwQkWAyJNO1puopScHdDwVZ1IxIkbEUmrqhqZTmKtDF4HdQBCBAJhuokCUEqBgEEsV5CKCsDodafrcl91pqq74a/ysgob41f8dCJACyXEy3iSaK+SzJVL11eB55yD6u5o96/1iSQHFSWB3SRLR5JVY2wHrKKkMcb6S/cpaXiZWwFXUrK8CyjJUuxwsLuX/REB7DRBSVltMEFyGwec6ZYUZIgmV0EcVVk9KwBXi6QdOiWtItc2gIZBFDDnjGgEBO0ncGjQfahUqFGZ6Z7jFcovU0ky4e5lGEkdr64E4KpNaAS2gbhFSuju3e+JCnpbdzX4rBZ+HBux2YmgF0BKSJobBiVI4mwH9jpVQvB0H6gaqCrbY53Stu0hAEgdSCSFSHsBpQt6EFB3JyqmEcXRsJOk25WDFDgloilqxUPCmVCyvY4s7aPbjpDdUAgIlW6vz1wmWGaZcYUozNi9MqfGuuJ6pBYcWF0U2UHyW5juzLYDxEZWzZmSBBVjb19174xdnR7gwULpXFXr6iHbw7CkbvdqB72D4bJsk4QIW2OIZbTdcGyP2UlyO0qSuJxrMuICC7hioMcY3eeCG51dTIUK1nVsgJyFwsRvIbnKw/rFhNupqhJCIIg4LJIcSs7EyIbTkupyr0CNgwRHJcnsGIAGSSrd3d2obTCyHG8EeZm/+3zFtNatGhf4AeDpPjQAjbHC7AtIrQs4riq+4PqCK0BsSfrN4bGNnKeP49jv7yTegCUMaxwCMEYRqO62/QwlGJF01DBdYHebWfhMCy0tdhaAAaCEo+wSgEbcZyVoqi7wDMW8OF1p05T1LzpkCJOrpbKJquK+w5RUVRIV+gIpAFvs7rG4BVDLKkbcmOfMsBb3WxWeELRbwYsfrZ83bPTCKjOWrzf7DcnsOmNfHgMAMUGwbW8kiUu1PMvrT7CXz2ssroPnxOfj/Lh/DkAJBnkc5cwOGwAw3UKmr6C6CKe0/G6BgAAutwPQBWmSQMLuJ0wWbQAFcJPJ2i8R68WQoLfjPNtXziz8AkRBkBqkDpPvz/mfv3798/3+6/Ecj8cDwKGFZAWE+LIcwHlBl5J2MSYThEjAC5loP48kIWKnF12kuwksMnOVH2wQnGa0ikwSARBPo+36ahHQMaoq5MP55/v7f7z/+sevj48zExyBCNhIOtqda8DGagpKMpPuHs6iQqCJzQRmt9FHjSTAqpsM3d27pcFVBAzgeZ4kR1VV6cKFBZAgPMbo7qoyG1eXGGMQdSJ354/74+9//vnHx8dn52mcgp2xPiRkwFW+FjxgvjpABVVjI6JMgiuiGjGC5qMngUXgqorgt9vbnLOu/leDz2mcvWAbgAa16LzYNhqLIq8qVyoTC/g1+cevx3/8/PnH5/392V3FQ0pGO8n4vWUs2N1Y2bnCaTFTOtm9UyLpThJWikUvsLXt/4rdGodIeyZmalBvt9ucc56t8pZ6EoEXWCwApAGIY6YfM5/z/vP+/OPz418fn0+AY7BqVFVieVUhvZzl5dSd976wOFeIX4rMzjnbRDpZkLlK2wpkCYtyrpNV1dV0sT5FUtvLOt3nkohMSONEQpzxz8/nH5+ff96fn90TPGucbiaYM8kYY73VWNGpME6RFGwukoKr8qwjF8vpBd+xVIT9FCOgBGU+TFBhI0sRqKqA+MrvHEeRZGfRjV1qRLDu7qY+z/7H+/ufn4/77KfbILYygF6gy1Z3SWmPV0leLbkiKIle58ZL5IIBXNRAJTkR0ACJoInthNN8VbYFLmv1HpLOal6Fr0Bnyar3x/nn5/3n4/Hzfv94TquqSrfbeTYRUslMYC7+bk0jPRYCNQKswo0Km8EFVUjU5QyJC55eRRYAaieMGQxqxu0WOfil7WGjcUsQXNKGJJJVn93/+rz//c/Pf90ff37eJwwNgUHopYRukL5qy8rSXkn81RSlpUfYq20uw6+rr+MaKHBJhhvAStpa3fp1kICTUbWUvG2aSyMSAKeqWOrwabx/3v/+/vF/33/9/Dw/kYCuWtISQqQDeksaXDbmxgECMlZfvFJ2acuiOJbGBPDSpGa4uDo2mEGSzqmFJdsBpDHGICOhVk7PBeuU5CiO0rgdE/yY/vP++MfH85+/3n/e758zDaQUyEvNlJfPQ2SpNVlQ5hKhqTa+GNmc84VwVlKsuvkFyLQjZ4jtSzdObB/H8cIagLemyDA+atCNCKXjqKp6TP/5uP+fn7/+89f9j/vzbp+JCbASkNnCh0kx3mL3XEoXtni8VAiSY6vcrADxJJnZJKd4hGMMccPvLaEtPFecM3QGR2hkf1DSuagASWkAvumgRsTT/f75fP98/OPj/r/f/3yffhpNbIX/MpUJL9LjBuRdvEOqOyTdAMwSlNHdAM5OgaNEUge64yxC6gUVbwLOJVMSwOA4xJnV4DYCgXOokszMJG7XUUBBfJzn5zk7fjzPJyvH0XU7+2EtgQZIFgc08WKCHSYmy54AuFjxhYLXfTdAULikb0kbFLgv6hciYB1DqtHdfQktJLBEwQ3rd8gxEVDF4zg6eL8/fn4+ZswSagisyttRderpCe7BCbkg/QLvFTtLf/fVQxpAvLR1JBMbWQHQGLOfq2syrapMkvHK2o0IVsctJUsrzqpdENJOCmSVGNUYY0i6z/44z/fP+wQapFFFu0XeRg1BvRv8RRkSZU0bfv96sQhjc90kpACMhTqPQepIu/scUrLkyySZBpDjAnMEIi7CPrPGEwGEtpgiOA6IT+fz43H2fHSbDJbcunODzPfj+DZun89Ph6FBbcEGkECgk94157cX/tZ2Fx+8cmDV87R+44FJcCkRp09d2mX3ViJI2K1QhXobRw2SZ8+Px/PznO2YsAqrYi+pJmEwiNtRP27Hn4/HdC9ikfRqAAWGrKqlFeS3QytbT8AFQLddn8+npGPp41CSQuq68FgcD8CS/Jdn+kmyyCEcxwHVs/thf96fj24AY4xaVH9J7QtHJAoMDfjbrd6Oetx723MRiD35wZokSFpET8FqwkUt1reQ7O4DBtJdFKuW9BPpKGKpWk4SIxr7JiUAFUKSik/n8bh/ns+nM7FGWRl6Bcy/9ROyikjwNurH7fbxPL3nTAvsgatuLIHlFQugonAT0aUCJhmv5KBkqKcze+ldBoaW95eoqO52XMS3t7eVA4+eH8/5mP04ZxNQOREicnq16qVwK4m4bLWCgYfqx+3txvune6n/wNaYwrKzZIxg6f9EtlhA1hhLp5mXMhcQXL6OGNN0B7UElAWOhMHSqDFGSY/nfCS/HvM+Z4iuarsdOho04vNcqBkR4kuS+KotIm/i26j7fVIqyfaMV1t42T67hC5hfyt/S64jOVacxErCsfSCsYeF8HNCQFFLvr3djgDT+fPX/efHp8kMWQUxp20YW0oqygaJ7kh7CGJEGisgKcAp8ce32/vzaRooXkMk7IngVswXaQpyBfMMQgDh1chQIJdy75gCSVW5Vy3C7dsxqrr74/Pzcc6ZauB0FBruZyNLm8ztqKVaLt+OKvAS1K+pcMcICizw+zG+3976fDoNqMBoX+NVNLXky12skt86wzX2QQftRkxnbo7XEHyUvn9/I3l/PN5/fZ7tMcaPv3z7y4/vtp9npyGOpQ0e4gG9vb1V1aGLSTKF1HJ122G85gw4iFvVt2MUITDpRdCyGCy9BjGqVzGQETi16EL7ixMniSMGKjIEhzTGG8nncz4ejxC32+0vb29Jzu45n6CX7rK8rEs8XN/JDMq8VKbeaYBck4eA5KDeSjfWZ5ovxn0V/hfIh18QSGQ2PyXHJTUCAEUYFd9qjDEA3Z/z8XjQqaoFhof4nD7PE8m329vjOf1KOMDSnHPNrhO/ak4HoQr0S5NUCJQh5vtxu9V5Jg6DBlikYxjSVn1UQXPaANa8cmlHGwvhiioptzGO0vM5n/O+pq4cqqMWCDnPbjfJ77e3A0xyTuPq37a5hDppWSwxoIVimn6hyCRjDDfKOYp//fZ2/2hicrM/7lEkmeSoMjExa/sQrxo11kOMj9K4DdudnPfHPH3c6r/dvvOa37QXHiOD2xjsFNLHcc7HOvGXKJOMYkiYCmavkPLqsz3NhZqvJDmIbzeNezCX6r1nsq8QkuRMKAUyyrU5QHLADbLGkNSd85wLWL/dbmOMlT1+Ys5ZVfoKS5oz9lFj1HxeAQpA8W5bUtIEic4F8SVVLY5RCWMLHMoRvdXxydlOoEUPSZpbKMg1IZbScyODJONvf/lhpCc/Hvc2apDkGCPMzMy529yqkZKKChqEhIOEdIize+9SUHtaQ5I8joPuhHOuBatIRC3JOud55lrQKPDtKN3JyKA3MjWl080Nr+m1wVG0IzPAeJzTwHlmdm7HsVQn23Oeq2yRFNdyiwSu6SOAoiLMs49Rj9lepHkNCZJODh1jVE4PMSCKt1G2bQrx3h6IqmBI+nG8vdXj6bmbwI4zLK37VZdWiK4tDADjX49J4KhxHEcV1+yyX3CSF56DYlNZDGezoxXBNQ6dc3EymBfheAWxpOPGqjqO4/F4APbXPkkBlFzBMfTjOD7nPN1LsVs4chR9Dbr2YEdwIjbJ8Y+PO4G/ffv2NqqyF/peaQSyqtKLkmpLvC9cGRT5duj+1Dk9tLVl7wph2zV43N7m6Wmf53l27+Z6rU7s1TfiIH/cjvfnc4ne2YmEUcO0vTW59b68RsvjPz8fw/l23AgrI0RVXYDqxX0XfppMus/fq4RiJm+38fQzm+CnijZte84qjlKY5+xHz5dAta+YSbKqjCyG8ONQjePpdJAl1pNNYOg8z5nVtRyAKUTjY85hn+7b1jF3Q+BvtNQ7BNMwf6vB2vXIb+N4jtzP57ptjTHntPfY+CV0Z1e/bAzvfY32KY6iBvPXb2/9eIQ1uFve3KNpL1pjpKi+oLWezqPns2dVbbUQLC74WC9PATDU4fRafVKo9q43cI5RQ5Sooav7+mw3EuV2G5vnLwQmQVkLPJKICzWBR42055zrnafdWbRSCat4q7WfBmPvZUijPp8PHHWx3n61wBefqqpjuZM70V9+IFnFg1iDpusvRdR094yNOaczb7fb21FrLlrU1/7FGkGAgxqqo2rO+Tjn4zzxRepdxWOMY4zBtYG5ZBWioM/TH4/+9r24NwFoLHa3+NqXkITo+ZhrpJU1mQuIDHEUz4lQr7utlZSYJ9rX2hPQ9lwnWLIfIgJUBnhTvR03Pc6nm9kjEwl1USGuMdBa+wVFBeKz++f93t6y0Ss6n3Mm4ZX4rzK8y9z1pkUN6VYjwZzzcZ6rlQJI1jbhjpNdm2y0r53IL9RQxaK+vx23sZY70cYezV82WSc5tMv1CNFET/3r4/O///g+bgdgiEPsvIDm1jA6aYRiiUbkcO0ZiYqPGsrjcfYKkqXKnnPiGV1LOi+is+TcZf/VUpIOVMSt6sft9nnOe3dDeybCLepIClxVZp791OyenSn8ejzf7w8LYfFaYcFeyyID290JMd1nbw1558VebmztOfiqNTt/5rknZeM30Lo2scWx9mZxSQdCDvGv397ejnFNuGL7dBYi6u54+7+qhtfNgDP+569ff/vLj+/iymfbZCVcE9HFrXf+JN70IXu+E5C6HeN+zhWIdpssUIXjGLfbrbuNnH2+mGBgEeBYTXPpDmK+jfFWGiqCLRq91yiubPQFH/WaTBp5/7x/Pk/+Nt77/edlKoESLiiir1reneSoIaFP+/y3nQgm6XPOOedcRGzb8GoIvpYhVzUfxe/fbrcauxhigaj92Pq+LvD/AMHXo5+os/QlAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "example['image']" ] }, { "cell_type": "markdown", "metadata": { "id": "y1TqooRukQf3" }, "source": [ "Let's make it a little bigger as the images in the EuroSAT dataset are of low resolution (64x64 pixels):" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 217 }, "execution": { "iopub.execute_input": "2023-06-21T21:46:23.311178Z", "iopub.status.busy": "2023-06-21T21:46:23.310940Z", "iopub.status.idle": "2023-06-21T21:46:23.326316Z", "shell.execute_reply": "2023-06-21T21:46:23.325724Z", "shell.execute_reply.started": "2023-06-21T21:46:23.311158Z" }, "id": "QdO2VFHRkYfT", "outputId": "3e06af1c-62aa-4699-db3f-6e7654397afb" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMgAAADICAIAAAAiOjnJAABckUlEQVR4nO29WYIjua4lCNCUtezqTfRe64bLiNMfmElKLo/Ie/NVv8eMdJebzEgQxHAADsb/7//zv6kWEIMZREQAEYGImImZ9AMR243g+ly5wa/Yc0xE0EIAICT+iFWnzTUqmBBP6aNexhj2oN6UNWnrSjQknmEmJiVWv2NhEv2D4Pd7twpV3Dr4qtj9zP4gGMY++A3sdXk3AO1fu8jRLDODCBABBAIxDjCPwSNYupECjlq8Hh5aqfePST+O0h4H73gZCmYMhtPOQa99UBpcEhrPxie8+5/yP+Wn5b+5YG1K/9+k7aV8Zpu/K6h9euxu6PAEirVGfPp7Cj6ojJmDhuoC+LsnkT/cG0A7AeKTN/msrF6S092x44f3rhRwxn8yAB9SFZVTuMP8En4PCAxCoAfmXbDM82pljn1etst5e7D08TMB+fdo2R/W+n0XUi8CLvywhj8u6J+rdv+9rePF59eXPq/vkzutNwfBetdh/FsGodL+G9Uz22McaH7hRuuy3tnaiTCl37XUwuV+xIVE5Y5o/16ZUbSNpDIq30Oe6lnyDh80sNdXHim/mAhnO3t44hW1futj73ypufaC65e7/wLCJGbwGOwGKDu9DaqPu3OQiEgI1ONBLh84wxnyEMiqKD0HSg+Y4Vx9Cyn0yx6Jvi3WJNQMsgtWCaDZ2XKqMSncv+UQAyYQsfdnURS4tw8pB0BMDIL5OVgIbSFlYRMog7oXJGRHO+HFAziZMSYvXGHRRSUZ8WSp94NS1evlE0hGxbAuql/IIk7S2GPpZL9/hTpeGkvHQHOwYRefGP79qzBTNZWx3oukcq25PsLEpK1XGlATOlRYMmiAVDsjixE0FRkpJAAlT0Qw2zBo1IFVtMnwCt36G4uqFX8z9EXHi8U6lGRN1rYKVu/Tm7IkP/4dxVX2ezTfShnFEhB0Bn6M76tp3ZU/MUTohOvQdu9CJNHRxL6KDZb6wj+zf6ixj1NwslRRGa925pNSBCsobdYpXEzXw+JvSC1aKRHA5Q93Le/ly3XXkqkv7ilDZAk6t+YEQP1pU33N4BUzk9qyhXf1r0Ee8tiz5orYHmSKmK5gLBNz5nNXETEkM1mueB2zgBThuHhw5iPXKn3kV4zFiGwtuQvAiSiHKwFGGMJEw61WqC2VPlWJRx9lOlqs8DRM7PYx+Jc+qAC+owQAjWHp2yJRG6NYbEQO4ImuqCt7Cu+QVVTcyG5doe4BWASqU+JdtmHEbrqYV8N27v9L+K9SxcyjGrO9ikjrE7NBrKa1WlljFxOBQ5w26Q6QFujG66zOjx1yjRF6KwWG5f0bya8F61jCSOiDo3g4esXaPy0/s73/1coiV8zkUk3UYOVHhd1tBOopkWlgaIaOv3SH8lkRSaNiv0eIExHjSOyrHhTBQrMxleBdu9MMqpyhK3Uk/zhuC6PHtFGYBiMZoR9tIAJO2+8gOZ1/4MvFtxGfLEJxKq7amtlcbZlZptRpJccnF6NpLr0PU7cJTwAXETAbeKlBRetmjQNCsYtxDVhS5xxbRF4wjNOJtJZRgUA8XopBUpvtHQ0ZXoWhxobExXieLNYhKl6xZ51Vlc1qJbwp08QKe5i4qOyOFiJt4C2WW+rdrc1RvPdBhUBNZHsIZ3ofvhTqqbky3ujqXggBtqJp65LeJQETkx3leSEmMCvKaNLM1GjdOLTUWdre+r7JtIKFSNZoU+oXHdgWTFExAWfwyM7SSgS7JbILn7rC/3g5y8ffVTbTF3mOl0kulbSCUj9upV9RA9hr/ozohZ63Df1GQdEKUxqXVnU8w75Kqxbf7lPOjxXGmrQGRKPlW+8QgsUl+4nqkfxSOJ2tpWDOd6OUnrfeX4KgdAvLU2RMKkh8u6F9XEVG5SkjZrB3ulusCAZdacOHVvNYk5bBF2mZpGp1V5FLT1hrbVa9DVxzbQsXXTkkRIrJw3uwfssEDGEabD6bKLO02RwPcVsYDayC1UvihEzrcaUKkGBoYUkmLiJnVz1ft+MnJ1VSH/WZfrHYjUwuFLFwlqeJB2JtkTfDKzE+4llPWWvl67qyaXbfhRXNWKrfx6yj+WBVJEyIDCVwpDKYDga0IdSSS1C37l7auZ6hXwhrqHlJAJn/JwKDHWzpt0DgEu2G4yhkzClmszjH6I9c4Tkp8m8rC4t/r+nfJvgkgoRzqOSPNGebFzeSisn3xl7d/F0Jcd8aXu4rmcWO1nplnC5yxw9ZXPbi+ce+HKW4wldsK/C+xh1psYpNONewk9YbqKGRV5kIVL+oec7e6WO9wMHEsTPWoWilV+1M+vUiAZSjUj1fcXBmAFqCNXhf/w9ThoANw6YG3XQRWeyzCV411Sh+IRZ7xkxsjGUanIWm7DoKZRSUiVh3y4gHN5xIr+IgWMGfE8ZM+w0npiQ6pZJuxvMwyPZt91rJL4cqhE7GolcculZUJSEEFRlyj4iaCrS7ymdSPzQaTTqgTBCApPOE64MLSlD2ACpbUp/yyG5N4XoQWcJPdhztwLXMixJrrJY8Yo/Rzfcihp7NVcPhTdBoQhuKxRBiEgLAsbRcxdbu5sJ2J92GM2X/hWBtjr1/eGWGqu1fvziVTWJOTcY9620fRFPvHR/aLS+rcySCarGSrA0ydhoP89xLDdzxV7t7073a8KJq+yzYMh7Yfh4pP/apUnh05wuRj09AR00k+qVqWN9UgVc8P+axyuzkaoHKDERYp0PNZieIiCAmCM1trA/uZnOtLHMQSp2ageXmo36Goxo8TDI5TIkZFE7JWkuwSFvk4q0HmsMAMeBZTkJy0fteLf+r0YoMVmPSdjfK/WHxrJvltrpsJmexdwcWfEssgdVhdqcCd4XqfLgQFIBFH0tGBDtgkWvxhwUeNpoLCWVyl3QBrm5vEf+WOsNbOiosflxwH6M5aG41JFte6VXMOqjsCFGGYW4A49u9deoXTLaMN9WF29riHI9KfZ18q10zD9+S99FfGHp46RAERMRgsBDZom+40FidRbA4BGvBHdF4oQ8Jlwtnuf6GK+WRuHeG0vJGLt4vVKcYHocdRbDCCkiq1Peuk7bRrRbrDTVHA+w1MJUB/sAXlWp77QVdxbIFRsC7VFE3Z9aDVaqOrR7Q4wuSXBBULxG2qlbwiKUR7Pguk1yciDJ+Sqbg0syufot8Y2LOavx4Vc9RuKl6tOMzaq3KLCejsbLiqmJ/6vyGNVtGMyp4p8fvOuJdr4vtNxgTNFDlbdBT/y7rYRw0k8vYbtDTdGZt4YxbAx/hIoje66M7bHGqyZxbrJH67XpPHEuR1DZmPRrfpLYpxaszVGMNEh8fdmeYswQLX5Nv7JNZlZNNnooqHjruv8xrMEMjfptU7Swce3I71v9CzBPqeDNr1Otj91Lz41daVGXJoAEyCBgsM0YwEcCDiJLMPc9cZCF3z6S/xGAGg9mWiYIwrBEelu630RcQ2DOcxUUl9RuTbZ46dC6TqAwiEhamSGs8LFtPxC76MT3Zw/J01VhbLBFw4a4JpT/la7v2oVjF6315O1VAVYGjdl6lIBWhBAmtWlh8HUroicIk43tSa32U6kR83vN1gst+qTrOFYhRyoO4Z3BXAYkx9YQ+BUR7HXYdr6cAmHSlEBZLbFePc4XVJme13ZK3kShivkr8idYGL14OEE5c/K2yCBYX+drlAyr8KCaz2k5T0dwPtFrrvWQO6HN6z/d3lnAnQI3eQlX+raB8p7I6yTLltd54EPf1arvyqFA3V2Qs95k3U6s2QslN/uATaL2pg2WrdpvChRZ7V8MUdkOZY3cevJ4xgFfkYpMLn9x6VcOVPM02fAwccMeEurkNTXvalYPT6EieuVzwuWuqbPcb47dP5lc7YDBhi4dc0lDvZIVBHs0CGELgDOpb/ZFd3bM8h+F0dyZJZu29/S4WayGYAl2VJ6JaWu/0KhYZPkhp0hiGeROZMO97OPOiuAY0a+gfS+xNROESdnIpLJZJGFEgkDQCoEgdRD66GN/VVYVXDWAQt24x5/ddTYe2lzr53GgRApPwWTX5HbrYsrvJTGcQnwDOw8d4IfBlKUx+6aCTmCIz0VCzL7XSrZ4PKNm+d8qaUvf6u3bYAy8aqk9+5M5Qevq2wsIW83DYHdAn5dtn0H8sJnKxfj9ssRrfVh5LmGfGXj9vnCxPt+Ri0l++3hIodlNJB6NcbN0sW5pXbFbU3W9rDsPz0GpxPBzV/LTdXhgrpU77mLUxoecHAsW4e6tkhc1ENMNRj16wZChKD+FOn5xZx3HyrK9Tr/2sgtJHG8GZ0D8NoBA9qRoAt1qbD2wX0L/JtWe7HX3ILj44dKwQrS0c3Uiv5pSW7in4pNx/BtI5VB7JAuXBcFo34tMM6BgdLJaXQdEf5PPl3qpzAekLHKk9tJp20n3MmN3v+KxOGa+Cwl9xv47e0amFzuayvoJ0AuGhPZMWrEtHkwPw2rGKr7AL1jtM9NNS4Pybu1YI8vbG9+nyt07no9Lh099cYpbij7haylGw3hLPkbzqhJ2f4/ZrubiI3FLDMtNYVjfUWnm5/9WfvQcJ6waLxEIRrs9VmasWqxcU2sOGrR2MBF2pJO5xr5P6ilgxkl6C2TfbHFcGlEfJ8eILGYkVpJV1aB/SfSrd6/bK4l7dJ1ZTkjQvTTdljhY8cxUOqy/DakDGoQjMaKmxZ08wuZFeTF08C7hzsiicqVmszavSi4qitw335TwdRDDGQFm7Go8Cqz0rxjnuDkdxBhyvaDPHR8lS53nzyigLGBV7GW7bDSBXIf/INLKHkwAA0TFCgWeBA735SL4n6jpVG5Xb3ZEI7qq6alosLyuzOLkyzbhhMl2P7NpwG3OMeK7oSiENK2HPrEuT8Rn7lg7T66f+rb7mR8VAhzHgI4o+kySi/xod/LDs6BimbG6xlgnHnQ9d6rgJt+1wfezqIZwLa4r875UHuHNLUb/t8xPpDjmHYl8lspmLhXJTlDSVqesW1LhC15ymuZW67CEOGypAQIPM8LweZ4AYrs8+kx6UD8OtBxGEb+ixgJRrexyLU8IBRuPJUjf4XEOINbkegMAMSKUGgGESy6wq17eZAA9MhcCkc9kY3I5OGkTJwOCRxt6QoSuUMkI4CBaISHZD5ICAnDHJhSJE63qmtKk5YPDNHoid4GtzRWj9UrAjlwq1qad0g96NFngx8RjupsQHrjjmda2VO1IFQ2UCvZUESNTG3p99C9tdTVwwIk2xZSxTElahCABYXeAxhAo/a49wfsGeQ4OP2PAZe6ZANCPr91YUUgwMkelAzpzs7+/SacP+wc2ofxDRPkqflXjuRy67PBJQ9lMKjqC113kuw2Xr3+0o39Qf4hXG4tXNXV7X28RP8M5S1yYNZmmSfBasHcUuJdwwk0XTDRCW29Zq6lk7GQ+9bCr8ZygZHNsPaqkVVVyue3f8spsnZFvhFKuFbasOGiR+2Z3XRdEuOTSufSweRlF82w0VoCIIPesAN9pa5aUH4Z6wL8bzCy0x4JlYlLpANMqGkOGcKG5ijBFHQBC9tFhrVuLUr5LAhtO3xsm0ik5ApfJlfggdSJ42IJTNEZEAl9VpgqfLf7kwiMPso7SbLiphqn43fPpW92XCFWbtcXRnSSlUgzpGytOiOoZ2yH690q/0Vmn1Sgq+yn57rk4KwH/Dj+LaUyZNuXo6JxbQIzgc/GsT8GxZJrcy/+TZDUU1f8OtEVVJid+rzSw3N/l82eKfOepeVRmkv6O+/2jB4bOh3LBnbyxPClaz1fuc9v53ZvHdvKWCbqQdqlqAstURtXdiOOzySVFLS2qo1jgiIy8Gu5eiOi8YMUDzWEQcuyWpQOQFW1MBbZ2N/Gr7V1cm7hxGpMbNE4XGFMNvTq48V7aP9k680qMC9a1fXFxhHAyQlUOBIyDkmztqKyoWTET82IFOwj3PnusxQZ22kd12GJQRWbWmqx/b5WrPqit97Ll1BhH7Iu/AOQG2SpRjbl/9J5PmJtZcoFNdZItz5CLEZT3AjHUxd+YDF9p36eYKOuG7fEoPucIq18QAcDtYDSbWxsAlO4ICpNON5wPchrf1tA7cJgNVY7Obnn5hT2JUlujY/XOukE+fkz3v4R0R0aLFTaGJ8lIvnrLYibArqFf7fWU+yC/yuZWlzbPFekVCofXlB6v1ddvfeZxvSukpXmMyLPu5qo94HEdwXa/M2yxZFe0McALA1hTmagizjrcuEyhK35mbBsBDnvannTDYtXjxoZFKrJpWvgRyC383pyiUF3GOqRNuWvF+Pv5Y2POhLRjk9A45QVWM5I9Q4Svv3G9wz14zAFQI68Eqd1t7fIGAvxuFbQ/LYFoIhzdfB7aur6LwZ13FW5fSAC80IIxD+NJic2OqD9WIlLsg7EupmFN4ciWun2OQrpA81+oH8ak7QZIX+/j8h3mdmD/ztUkmWKIJRu6KXLjcu2zThtZ5jntsdP3cKu8nAiaQjXhJFp+EjKtkkktn7XtlJEicevLp/OBkPNmWDIUh0L9fnPPOXH+v5ooo+Vx+vdCZZi0/LnBMs1ZcbO4+M7G2Ekq2Su4rUIsyZkv5NPkSs0roQvVpKdn8lGWXi0qXd7daUr//kxKG56Wvi+rYrUS5oes0aBGs6LmjDyaO3XavBautXAiz+aYX+3dFj5u7fCEJYWP8no7SXraNBgWsFQ99ApEifqcf/CEuOTeuZtftTiH4df0VftVzGOojAdwXyTXDtmqXNt+rf6nouTA03LpqSqTQdCwiEA41LzXmClLvPEaaPqvsZLH0LAVzVg2JugJVhYqQp2Z2lN/xxlQiIkpyzA/E/SG+JRVZokk/eyjjr5BCPaROPaBVYNOnVJaUoPy2abIwBZtavUuJJQHarKD7/1jUw/XuMt7BK78YjDM5ZRYSPXMbtY4DWvHnXT5sDQ98IXD1AN6MCVXsxrIVMxz7s3JXYo5JuEe7p1gst7tvD6krhVfi4//ue/fHDmwo+Z60WCmFdDjgpTTrks/9i3g6QcHSdHUsQe2fW6po7aUj5N1o7bJ6eC1P2hJm3upH+3Vq1BHTmTq2f2lZ+ndca6KjdvnvI8Y6Bg1oQ70R3O8t45ROjF5W4BnBVXj6gy5x1aGsnC/mulLjxHAxc92Xch/jz6eo3xQ3+sc2/qDagrrCYvEy0M0PUeFj+W+v+Wedrmxfv8uokEe4yrQOtgKkWMEFwbVJwGoa0jB2kOOfWsIucuvmH30NS0dB9nF4l87Qzp/kNUUPd888iCzg5Rh9O2rAg8ImZrvVbbrb2ofHyuxSzIPt4J9ArKXWjMgih1B3WSM7FZ/8OWul6F6RJtVU3bEKAoSZeRCj+bjWq+L+907XvI/2z0bNUMhaWcljhWkFAgBR8J4jZ200VPBdL59VPaHP8UsDD+sIpsViP4M44VqtNZ/geLK7wxZCMadAmFWxzvmund+I5vbCjuMwTt0uBK0X/cMqfQV77d6/8Ljg0Gq0hIgHgG71q8HBoo1xS5sPWMT9sIKsCVYnqbN2QVMIdar+/2Dqi8H5pnw/krz9uT/D2x/9hN4NZfmdBRb9HTK1UuKg6ZO6Tzik1uqC9e65zNnVG9xuFLq2amo+bKn/JQJl6n6Mjue8r2mvsL16os8Ie1jk1rNnDgyRS6a8SIxdl+Wilmeil0HpyKhQnZ1yMjJXzmQAQs8JYr/qdl1YjxBCqEyZSXsjDnEiUWNjE4PaL85JgyUmXEsgidZpru4qYYB3p95t94wBhwFes0jODujsqWcArAV7HNkkdXGsViYlPQEHURy8FvSca7FELDHZXH/VbHZ3GQ4luhepj5ryeDdOB9IpusmH77Dc5mfwu7sj8mvp6uMtAGHOMEhfHQgCxYK2RIGv6I26Dl2o1NUkS1Kx3p1PNXhSWsmsjfaqTgY0Ig71+siSurVIJ/kT8UEr97n6DU4UsbVq2Ya1YajjXOF5pQf6512CKwj6x8srGV3Kln3+e/zgf65kUNMHnOKiWoYjcDiXVVXKeQeH9ommWQtAILAVyuf1WDwGSTnTIZdatIkcuJQS02DQYOLxUsEDogeRTR0Xz54KtFqBEwpMp5cPs8dlpdaek/bXtaiP8gpCL+O8u7TNIX2J1XrLVZeLPflE17gS1y1xgmO2hJ5PEdRZrF2r24nA1sEFdVW7mfFZRgZcBHdxbiB1YACpQInIlKkZ4bRYHguzCA0iGRo+mLyfbav3zpsfxMLcjuYJGIV4osEhOknVRwPRi1aDKlvFaFXwVdTFvzqM6DGVdTKDpTK9J01fTOV8YixC/voMlDmsmuXp/Cud20bpRbpqKzUDUEdO06R27KS/7IK5QFGaYBFMkimQed9TRATHpck6RMNWsiekje+ObhL6Sgy2pXTRIcGLR/6nbEVZFnm6vN4TPQFqA6L/LcmRM0nekn4KfyUEAU1gAveUKXIL5pz3nFMFq+f6vAZfwouccTPPGAsvU7XtHHW4DchYCUS5Py2Muf+qZmIRv7DqKFVtUP10qO4CLJdqA46Dqi858PEwsZVeofu4RQpiuINoXu9ZGjC7VqZ+N1eYt4KIiQcPf/dbHoP0tpySQQjiOIaLQJoPZ+ah3LDZYz0eeBKBMUE35BZ5TnlOue3ffc851RUiU+HZnNYUcRQgvsuUAMvQq8cDCBju6aDeE8RDTZUFXZSTrn0ICrfSqNelvH122ADBNpOTKEAXq/jIIiDdkg3YRcq/qve5g9jCw3yUt35tF7aJqg5dWh9coV4CNys6QCAWAAKRAAEp80dosbpG7u4PFXCRrW6I/LgJAE3CDXyJPO/7a8rXPZ+3PG+5RV2hCdYKEkaOU/w46NwrHcFmjeLiz5HTf6+yqot/2lmtftAmzNQv+As4Pmzl8Cd71Uw02F+IbFqg7m+CnoKnzOeUf933131/3TMEa8q8p24uxKOcN5Qt2G7qOMKhTOcULQK9Ea+EmGq0DjenqYykSujb4vQO8eJxPodHS6iCzi6gE1n6xZXy/BZ1uM3agUA0xlIB+dtSk0Ic5i2JyqR+LPwt/GpdfZPAGUTCNt81IjFderbZ09J9u8FSkI6NWec3bcx5gFhAIjIhz4mvOb/m/HXPXy5Yz1tuwT0xIVP0hEg85py9YY6RhngajSyTWIAOymA7O94NIWXiMUyh6V05Vym4WwIVu7uEaR6eVBRlRrXET8iGotlSAapf4BhYT58A/gYGY0Ys1HZsZgAy/BbyDaTFyUf3d54UF24X0rov7OweDG1jteIhtVh2pLM33fvvfQkEnn1nlSSXL06LSCxEt8g95TnvX/d83veve/7rvr/m/Lrv5y1PkSk0hYQgjtYeO9SoIpMd++OC5WOBKf9xF+na8sbgtq/CvR8pdU2rC8q6VH/cw0RIrynP49obxrSM+Qu3sN1JiqXJYWL5B7bdcCIEkgl63vN531/3/ct+yq95P+f8uuc95RYISIikbKNbT5vhGs3Atg9mXNPmrtR06lks0FeMnDqy+lCESqm+YwzfRdpUvT23cHwDfAARTSI1GxyW9sRkD7uQfc3Er+ccz2+XdVuZ36H0GQD7Xk6vuCtOzMqxm1g48RGdjINglcVGzLEoEv5yOc8NkU31VeDQKxvDnUP4a8VSdhQPg0mIBDQFE6K26uu+n+H45vya8pT5nLgFE5ikUmW6pQx5dINrrAhAb4BwtAAFwaDVzlLrE5VbUP5n36hsq5TEHJnPTtRue52gyOaE43WTU5bE2DAP1z4fsE7MzvEiGvFTKSmtOU/MasTDIVtM1ObLlE0Nqbqz5phviOUowfT62r8gzx1kJEtLGxxzF8tY0tZhBaHOHHXdDAKYNeLT7NQtuEWe9/yaKk+3Gq2nzFtwi2WwJmiaLNrMq7ILx+1fzr+KSar+brLE9alzbeazvbZoQn+dXFINiZqUnalN2bKb4u1Lr5OHS20HGsgqPHb5HTG10SJjb1rviHWrkc6VULkOfkOTM7QgqTyVSFk8QTArhS+R5xTzfc/n130/55xz3ipM9votRXXnZadlrrB88iFPNe16T3VxJwfVYV1f9c2/DcO0PGUX1HTlXDqOKCUkDhX3EpNuyfCjBYr5ic5UAqMXoDihr60WSsFqs2Wcl7Q6iYVBi8kqTVV05P3dhKaY5uhXaMnwLlRtLA6ko5H60SyWA3Ua6tFF3ZngFnN8T5GvOZ9Tvu5p5mrO6SIFInEQFp6jHFFgzbX1WIv5LPENl1V9hrpOc97Fynj/3fsxO/IwbJFKv9uUwBzqlXn5sq4uUu77ET3Z9ITrkl9h/7p6uhJDMqmdY4UAYi/cLlbQ701V4mF+W4BBbGudTCTtlrQSG9w0TgYbIusSGmaj5YIuWl86kk3l1E+7DvAufUPhOTGDSUCT6RY8pzynJqXu55xfc95TvqYm1ucEROXJnXmwn4kY/l4d5Dz62WItn7DL0D7e7cmzzVq0t8jpfj9eVbLccbiv53IOpu7kWVx0XABADhiIm3nyR4k8/+MWq4rQe8pPzOMtid8tsfXsG6Y4bcbbxnGf6aNk+gT5tMz81/P+dd+/ns/nnM8555Sn4BZoagoujsxpeNWCAhhwpxYW6xsWNFLaN4s7QdOO153Otpn6yBfdCpPmseIGWewj1ycCjhqBB3JeDzmbx/XhVTBLZTqjJ840HE5jRqQ7FcCMMXRTRpBpRjae+a4Ul9p6DNrf/tX8qf8ZzWQGxLwASA831DjuFjznfN7zec9fz+ev+/nrqQhdpqTvq1LFg0N0bSpPBMyJLEHUXzZeaI24o8yKUbEuRY8ids/jg9MktN4SEdluSf9cfhHXcW+5S1LHm2kKJWQQZTzkNej4bSn1SkZDM/mFp1iJyKWEPBCzmowh9fAIl31z7TzGIIKQTXPDQ3CoyXCFByzkDGEt8nEMXEK/lxGroxnAzlWMSfMfIBYFnoAQppAAt8hz4in3876fc/56WkLhhkxbd6AzrxZkRxK1wmMQYWjOn91sgYh/eIzRwRbXDO73JiutdPJhcwvqXiIdT8UZb5ymYvptc/a3VHxnNNJWUgHclQqswmDiqLcOVWYJj3ya0FqJiVsCgL+wWFtNTgXaJdulLmqcgAkIMAUTEM0mKISSW33f1z2f835OUUQFzvTGkkGtzt5GnWOphZGxbqZA6Wr7KvDimT3xnfHmA3v/HSJ7005P/GgV1a3uen2UJQRefk3b+asi8/0rz1H1WoO6xlGFWicMGE8tWhLSU1fwmcXKFs3WCjzPSZhCt8iEzejdE7fIU+SecmN6MIgbNImmZTvTyweiiuay924eweyHygPYMJa5gy5b4sFdPYWruBsuV9z7BqfjJq63GSl+F2o9RNsh1v5Xc87eXGCY8JSBe9ln3cz8uXZvZq3gzk3SEjsEKETUuHpVjtOTvGURA2ep6hyVtiWvhZpAWdQtFqWPC39X5lXDLoBICDdwC1KAJu6pOQXoaqoZlkwT6MzgoUuyEMNJEd3rpkQezGMMRwF6gj4xIIN5qrLisP2LN4s1snO7LViMmAr1Jwi1ydEHt5cGEXKQhvSl2ctALSX7gOw9I7VCmAz6U5G+C/2KyhCNoRNeKVimAyWpu7S4hDX92zCM5u+kqHFogECXuFjE95zzlpkr8gQToiJlCMwQ1dAAL4QVEZQ5xeyTiQblirjkmy6/iwqD4FKYaBWmPy0+90Jl8H4ma29rj9kdK0t2MQjIG9ofLliRGrKfvN97aj0fLeK4AIuD+TzWUwOMEPZYzYsUKUyRKfi65b41KTVvmWq65pQbJIrQNdVZxB2l5o2ckidZMnzBKq/hQSuLk+qCg9G4St1fVPi+lM0yhIcrNZXEob3JzPxWu5FrHXufl+Khp69/JLbX1qguSrcIKEfsYAkuEAaSEUiWypNLhz0KhHMtExiR9PJ4uPahqtTmX0OuDDzrAh2VKjFVZwEEdAtumU/NcN5y3/Mpc4poBuEWEZEJ0qyyZ1jZXorjI1alyg++D5o0uAQz65z2cI0BdPUoCJtgFdamxKQUFfYfZGSXrEPd6wemJln7xVaaR2vXqwCWQYr5Vp91hR6VkW6IzZPGfDPlkAensxHuAPAs2o7xElrlKidHRfDXU8Sdhcn6f1Euk02d4GOoF7NFDUwe902Re9rM8XPO55T7lltEoL6PbA+NgTBjUWpLSFXpQIF7lUO6JAysG7PMx2suFd+6wrVsaOCfKeHUC9iy8iOSUsoD+6s9iWzH22d/21m/ehD9hja1aKjfFvRZ+kBEHGZNkJqlp62/u5/TrNQUgGzJFIj05RHyQzxT79V9NUyAEBMSchofQd8KVvHsxvKSkgylPzDqYN/9wmlGZfEn/UdebD7yQCgR5aKw8HbwAHG/mairL9vit5TdGtiT9z4lgDnbIVIOqVHi6GlpzmYvw84szEsXaFbLahuWCwYYBBHcwJzia1dsFvk5pwrW8563r0SArk4KsoedqcCI/bo+NGqAyBah+sK0g5PJbsWEgs2Rui3+RrAylg42LDd0fhQsugKkd9qNRXyoIJxysVS5R7L1Yb/JP3SXaTk+BxMA+autnI9QcJRRT4wKb+K+ZrP09Ryt2bKQv2XbysEjNkaelrArQz3UYBMsM1SkW/lusdWb95xPiE7O3HPq8gQREZAwE7NSNJjBxLmcSNNIq9g4gouOFtPclQqBFpOR6dXPUzofFu48/i9V3vSLd8phh58akPl4Ru9PvGGBi0zkKQrzeBbPq5CqEZjADdxTnjLvafD8OeWe99OdYPg+0TkWttmAZhYLnPrzoq4vVuBGteuhIBteabaj+gX1CoNi7+B7LqOC0uXDumQqs52V+YU/L5hyYJ9HGX2zKbOZqIzgCCREQwjDmIXNHGUFYZtLNxzkwqBvikpG5plO61WrgXLj5StjmIRYCEI0BTfkecvXPTM1NeVrzvs2wZoQRV0mVV078j00jccd16ml9tmcI2/3HCC7oe8WaxOsfT7QQmdKqNKbjfsRlfjfxTs1g9rur3Y4/8hKjdnLY+flC/mhtcetBm8HjDgYMyQCHIKlOegMWmN9WU1AtUOr7DIbuKXStmfLqXjBws8SnTGNIX6CtCKqe8qXzOctv57z655fnu00RCVzAgB046q6Pu+otZ0rcBDcE+9XGwxXgdE8OrKCpeQcYRmSP3KF/zULl5/Hb2NwlVUf7vM8ljfuhKvQbNfjBSndiJnF0pBNUflzylPml63nnL+e80uFbMoUqFucImJplBYqhKUc+arB91T/beU9eG9aTim17lop/rAPm7FZ18pzfRHOIeAoQ7Gm6nbqSqXVStrXq4XMeTphXzEFJhqa08sk5tingKzHEfP0LtTJ/jrPEc+TzndwZjg55c7jSjtSUEVKXKTk656/5vy65y9b4SnPG0/Mpy1VEPHdV2SpOF4hIki4EpOffLzyM9wMZx01nakjeBiVVZHfCVbk9MqTHoQ6XkOd0E1KisSkMrbSxSt8RqhcGBQ31CVJwTEkyxXaBFFzmS40dnEwiYeBdZE7EddFR9FA4qYItGNEalPeCo+Y8ShUcSw6GZGzJfIjKol8G7sInjD89HXLr9wgen9Ned66OB2TafprU3WnDTHDjqpJ1TSLBR8eTqSDyN8X5JQ/uTOzJmvtnprPXstHCVLmamYKr/6vLVyFkogc25Ys+ZtY5JuuhxQ3p+zrEbhMBkjgfNLFgXIDU3NR8/66bSf7r1v+dd9fml+Y0A2ic8T0s6bAHfK/IFcdYqV9kaTlw2+VFMbHAadXz+SpXw9RFzfmUYyxzxxfRS1hP3PJCvI6uWdp/W3QxI7DjKZP3YZn+gpgdqXlaCS+MYfBRKTLPwgewbmtGiUuigxNWQe2DiHg2dM+gcRMfrB6mVzyd454Ah0TJEJT10jd82vevrVh/przOeVXSaPb2j2jgWMKOalqk7zERBKLmsvRTwsQ0e99anRHKcdSwhM36vrFY9nxG3muY6Rd73Gd5HTK3k7f3+pM9RewLK8bPdBestJlDF24uc4Yh8SYYNmDK/7retrVxbGVuaswLO28D5CpDXL6R+tAZFRtBWt7wTgTjcHDwz0QgVkhkW2oMgyOe+LLojyd6bufoqs6RZdV+eEIZuqcgSmmlIfH+viWY69itGpOp/EI3r2SOi6LsoITcGzQsZadQW2kbBYr28gPRxnbrJoKRIhwK+t6x8VivSghXscbu7Cg/l5JbsYuUVclPmFbMTkrPcGWjRRtPkx3MVfpXeFqPTUvZVlN/YmvW76mfBXBitz6JJqwFyBag8X47dwusHwnNjzBbrGsK2gXflz0sQPGCpmlJrb2p6+S21ckuKVRC+BNLB08Jp9Wj1tuKwKS8uUqt3Sm5FULWuf29aG7taFisWoYBZQjIWCzsIfaVJLUROkHJuKckNEjpvCceIp83fKU+bSf+LrnL5UzX5dn5y9CxBMQzo50xBVh55pEvOhrf+AgWAAI0gTrPdR8+e35JU3kQ7udnuWmkilmlFaNSHpCgbXSdmPIR01A+sDV5+JSmdINO+qJzrjD4iCGHZVlsr7yyC18bhBPD9b5oOPFADT3xEPfveq5RTcYbpjGYPvnaQtbKaW+T+QW+Zrz1y2/nvfXnM/btx1P+XIgdUNi+4OAQSRhmDwqgPe8KXFySq+GMMbCmNgNezgNU9ysqATwMoLuAXPp4+lATW3nXVR4si7Vie/friPzw8Ll50uLtSQq3lfnkhpcrgXOq1MrR+J8UDmP+kjBUlxW90gpVLbDW1yqnnP+uu//85z/et5f9zT3N21v+xRMyq01cGk5jMThCnJK5Q1vXjh0Z4fjp/fseNsCvRCsDZ+kYYpBStFSTi+ExKRXuUJEuenzWwdepYyoWK6QkAbXXmK2U0MoFeX3JVNj30XNLlV28/D1HgbQM4NgiQpL8wEgmoKpyxDEslP/up//et7/et5ftzxFniLPadkpAYRZAD1OKLqwbAuoHpDzHjdY2e/VYaBcXLC3z5xGz7lwqgH4Kr/6Ha830eOAs0sp5gmtim16idSvwLQZvv4rRCxEL1aqlKzckoLIs18zfx6jlUwyJw/2sy25uksQxQznQmjIVbzdhMqUwNarPHUq3IrnXMlXovCwtAgRGKIsExLI1E0yd87M/Lrv/3M//3XfJk/QOWZLIoiRXVavVIOK0oGN3JJcyS+hCdIWYrsA9WokhVNZyJyDw3n2xxJ7kgcTpeE1KswOnCmvl7u9ZE/0mllzIXYIvc4Q5JrX4toKQKUFThWiln3mXOZ0d9u9aPa5U689uwOofIqtd2yd4xHWWbsAkNibGnRTg9xTnrfokWVfc/7LMp/zKX7KFPzsMvYZ7GNnXpfQnm7N1/5hu7/elbzKKOpUV5Eouz0ZZmU7KjLWHJ66xe4PIt5aOgG3TTHw3OvhTkOR8kNeLk6n4/BFrR9pBZfq2wzSpiOVBncYqLeoQOfySt57wLVnanltMQLs5R/iG45F5NY1ny49QrYvdPoG0amTZO713uCE/avzzQ2p9u45b8uWDtfx+vRyFofL5TGs38sqWBoUSNlXa0t1ewAfINajK283ljGp5rW4OD4yxUIuEInBW/JsRlqKCoAqDT7mWLpaYtVIotcaAjT52gJLbyrpB3BPyzEe7CLO5HvYdWuKgCZExQu2Z0Fkyo04n5PAjMGEiwZoCBhgEXuCkXnOQrITvK0TLp2hFII1X1j4X44n9jv8sC1Kv2EWpSSYCh9M7k+GbRPvg2CpzpHbfBeUSPE4g2H37yu/isU6iHeYi4T2QpQvsDc/V0BC8Maa9yM3G6AstTeZ4iqmvnE0zvlE5Kk251jnntrUHxNxORkBfjCLiBDpWcsCWx18AyAWZmHGMMliDJZLExcEAktr/Xj6aaGrsXFjsa4+0JHKRHfcnPYppumIzmOovxLB7NDlTBkRHQVrcb8N9dQOMJ1GowGsNyVcTEZUxcNxfdWrt9aA1ctu/QCXfFIie67hA7ldgW3ikwmZ07ZewdUCucm4W11X0ixl93BYh7e9+LCDzeSjfN4+bIJShxXrtSNxe/B4Po7b73AIBPNbGv5YMtEkKLFR5M0icE2Y25Z0awNpuYYeF8D2bkdk6jU648mVXT39+55tLmmOetXTA2tvC0Z1TG40sh9VQLZTkwgivqPhOTHltolhuJ0nOy7WlZKJeRBBJ6qZeNBgvgbPPHgq0o/dFpXBsF6dJqtWzsQRG4hDDSt4D2EJJxhKnIPWwA31xxZLU1IE8dXx7V/tOfNLRVAzRZ3GpDvpwoxNwA8ogYkVcun2JsvswmU66e9iVT1hU80C+ZfLvbg05mgGfHS7opn0wWOQYTvAzhXW/JPlylOwR06W+7FGoUK6OhmDPTsPHsKDOSEmNaXYeMYbO/P8beePWvd0YWRitVkQLNMqyc7d2yW0KnqZmo+Vx/tpM1WuDv7UFRqLz3NL8GHQ4IRthddfG0z4cf2lhtduxCBfThqneEUVapZuQI9CsBliFayYEyqxxykIsWoH01BbyAlY//9UHmMszGb2ZS8OErSAKjYoFy0WA0gg9gIOCryF5bUCm9Se0pIReYUtUVUPmxGVxwMWCSCPVS+RalQKJ8B+VEVjYho2dWwHCyvBCMwksKTUnHPOp8gECdkbz5rjgh/ArHTqMidllOa+mPU9SCUo2IWwdsVY4Rn/mp6BRyUBDX4ANF+C8Wzc+LAoOxpr1xYfdd1RkM661FVGHpKTcWEIVvhjPceRmJghpCIQTqWi79afNMXodjtxfVlIm2CthjppMENeHFw4hYl88t7d27j0jhGyFVHTJEBysu+ecvuh54isZkwWBHVp+oujDJOv5sqOx7Zkw4i3Qr4QjMAyqCtQqK7/jibPNZyrRQoP94HCJlf1YpS0zV52jDV48CA9BlfPDAvr87owsW4Ex3h154atvi+BoK0GtY++X+tY30ulf1F5RKZmsRRLeY9BGv3ZCYt+ZosdsyEAXqwGfl8G0Rg0xhgDY8iAvUn7T/YLnXv3ewji7yiPdXbTQSsTiU6A6eY7C5Wg74qhTTiYKGNFq0pHyHKmFUebDdvTGOjAjfIvhDINGv4yTn9qF9U6JcFkWxty0XPLy3m2Q2nSU8hsE0/k0PPQqXpeWWFDsYLhRDcGkeEC5sHjwTQHLh4Xj8kkJOzWpxwHjV4Ve4KqmKvOq4SlIDOm8ddGTv1QKH+X+WytNRvdyipYfgA1kb3KfhDDIJT3B8DgbLwuylvycoW0Ej54Ptl2q4B0pbVV4b2NvpZuuH/kyGoGsgkaCqKq8C5TvuQfSvZscDwJ0uXnmBD9Tzyb4AukhMinXb0pbiSHFSxjYEMI3Qc2iK/BF8Y1xpDrYkw2h5qoNt73sHGFHCeUP007DgpfaKjj0uk9l49Tkqt0fXfaDBOtrmfRoU8LyifohvI/LPxCWaqCh3X12QMDNxb4DU+ZmfvztKcZJxGI7p7RSRuyZJXXP3prnxaFDIPGBbrGuAbmGGMapP3zwqfP/2GfuCZI9Z1oAi6jVuxC8zrfRxPxksu86M2Jwvy3o4K2bg1udVqSg10gKKSj6JD7O7VKGtuX8MMsOTSi1bNcDFGZVCHWvulGBgtRkkY320lRBBK8QGiVcp2PGsRj0AW+xngMTOYxBkN8o13kHGvFyn0fiEj2emtMnIpUyFPfGmHQkk09jWK68pxfKfGHh6jr2FXndMi8S67bAGeduj2E4+cr94uIW16UlC09tutobnsw3epjn5fPp1CpCc4arw0e8rCQryQ8PCc5ITrlp0vt9EwzmwYgENsUcm901Ri/ygWg2K84jEW/0LzpIMu/X4OvMcaQIcys2rhlhxN3qMJwKnkBjrGuNUZ+8dAFnNVfrYReODtRb9zhXcs++Q2nKR1Ao8GFP393iUTxS0duQAr1bntkv7F+xxVzuNurtgppqGjafj0N9yDAJAIMAfTO/6n/ToTHxEQX05WypZT+gNsdxh2Ja1mC/6Q3PFksEY+Tyn4mt1VF3Q8decV4+PRVmu53t7tINcEiV53ywhEPFuKEcwaZvxv2g0KwcsETABISmR7oqe+DTGTci3AFLvhcKWmS3FFdYAjzy7kUCH7iH9t7wmkMvmAbe8bgoe8m2URgMZRtNNz75xQWx71VrLBcMTcHnxWCQxMulVQ/0FFQgs2CV+Kms8Uq7w/j8FbDO0SUNCTFXrFb0O7rS29G/WO/wYXJBQvrl/Cx1Zw/eeynuTQG+0yclTF0v6PLExAh3pQ5LYOgaxOEfHnzqIGv99ksWU1Pxiik58gttgvxcTSxyS2Gn9dnFmvwAA1iIc96Rvo/mtqEpvkVNgYGcTZdVCjxySuXDOTjLlig/lyiLRsDU5PFobqYMe1RYfXBRbaPSG39wNuHvTAdqtqLm5bzlz2D4QQ6X5gjG2e2Su+dPi2jB29Mc4J6PLUtQYtee3VN9Lmsu2ijt/T5ncvpnpp80lC9odnZckzc9vA37qxbrPdlV+vqT/eGuH/5ihKzWK9oI9VOXYc/whbxiuZ8Sh65LDPpq5pTjHL7tKrS67J8l5U7crLZN8vwxgpPSxhMyBQRPT/YD4TVhIK4oFbByoReUcl4JeW7sn6dfQ9B1fM5wDQcZo0xrjEuYAqGHQjtjMz0cmkkwgUnnvNjux02Ss1+rjM39avyOyrck11YrCC51yeicx7LAWQcS9AcaLo4nxCOKC8EqIXzjWCOXrsdrZNoGjIkY6pNyhMbUq88fokclaIrImKxqkVAtqlBBcu37GleyvLrPHR6ocxDMtLeFUvwysUXLh8AEm+fLE1qaxyuMa4h1xiXyDV4imUlwhUGP+q8XmsO28sMKEdHNuSef3vWO2m01T2eXl5G0dMoXLiyO+i3G1aNXk3xlqM4grQuWEVw13KwWEV8VladimO6Gj2EPruDdbl0HaW6VaYKFmIdem2AvMPf2qStfHd/0wT7iOIKTbZwjTFEisV6WXmbjN/uW8XmfUj403hxSdTVDEtYrIOJa1XkJyMwSLEkD6rg0oYDwnSlQBx64VYXRhs8H8ekyyWKj+t0uu6ogtEEEVmiHKAJD/1sy4O+olKVJQXrKNAJ8mowsYG/Aof2jkX1qPyJD2xd44s1U0r3kIvHYJH0ROeCXACWlxaSyhKjOEJgJa63wvVS62bDlOaW7O9M4uQTpxWk1aG7bOpCW3Dup4lMAHOJoTm3c7Q8W0WjmayuTHZBtY0uYS4x7HzyMa7BBYiBSMx/wdeDkS4Km6TgiRSbK2C3kLA7l+Aax0Jij38i30GB1YwwIPvDTnwRndXQxHg3e6uRGZMunhkX0zXoMa4ny0VjsjXlBthqQBOksNpE/oIgR4LO0l3ukudVn4NQTa7mpW1CL7o5cmY2xtSrO1isbCenPpIC0wAxwQoUwv35aglWP72qITfUacyAsYg0fWBLhMdisew1HoJETpE6t+Uu9e0xCGngJsq8E+Xu0j97yVFeWHauY7uycNtSt4Po4nENusa4eAxbo+WMKFK7lyK/4U7CMTmtx9mNA4nVYrVvGlTPXNrL/n1zBuleb6jOQiPHsCHueo+aXjVaADITE1+WlxpD37dcyNDffuSGJhHsnBboMWX+Vu3dhdXu7GS6jBtJXbC+QVRv3OuxvyrmZbGy/ZMDrz0neooV3nz4pOCzP5zqb6p/nJhqEhLjW+Yfj/Wz/SinA6Lf01Ig5lwCs9tPRmkyorxhc3z6k4hISCD27kY/cWpOPfNOdC5ZvH4Q2ZvlXR7aYKnRdUftGMC9cAcx6fsNE3TmenoeCP2qm1k6k5FX4dxhokF0EV0qYSpz8Jp4wRaFm+GtWvixNBQG9QT6zaXm0QV1vVH2IbK11e9lD+p353Pe02F4w2uU62OQvi6Go3ebgGUAjhbY7ZN5Bm3IZmb8oCkTcUSSk0hiYeeUWc1VEJXnICgxAVlMuvlksRB9NhBpyHRJBcWt1AXHnzpwdi/BQfYdFjF1OMGCtmiJubm0yCD+yDK9Kuu49E+rVDlDqApCKeubKfThRDg757j9CEteDlYO42CChe1U0rNt1e1SmQrL3BTpUdWAQGTililCYu/TxoTuZMdMr1eSrZEtj8nHogBc5WxlW6MwntU/3shNd4U/AAPa5Ty6TX6OJJKIHznk36m6cmhv5jE24uvdqu6Dcweapw84RUofYhWtlHvoyb4xDUJEeV5ZFrO8TIPHuJh1NhE+O0NE5aSN6e/5ELGZZ9jJZrHtON4E00QkvDkKRxQes8qZU1kNbENgKJab+x1EIcmRfwGPKt4BAArMKJzyswWZaQx+XGNiDAFLHljrYZyrHYhsvm+L2xzse3QYPewDvBZ7xWeOF6hwS7WujnEb61KYiB77Ss5OgbF2uc2lissItqy1fpLwNc2/GmuSxVqdn7DoQ23kRupct8fc9yyCpTPP9kHieAe2mX5P4rhYrKytqzUi9DJNyf6YTCTICiR4LMVWsIOGk4fhzjbzhjq3g2uMwWDfRNZP9PjADjlsykZTPHv75aHy3TrBTMWuewRzklC/do4KlyaXfnzk0UsVlakIQfSUVEzFxIrhAEN6DsuM7PnUo/Hk1hSC4TIiGmoJ0dlA1GzVTiCHlIf7/ydKwiyF8AazxjXkEpayGN8LFvn4p0h/4273ZTNcP8YcTUS5PiXl842cgCMysYGT8nzuYs5AFEsPcnELZ9ZMNzBMP2JqAtBTzhErhslePcwFnOeEWuJsOJ6qMJx8ddRgCzTZUeRbU8CcDCn2NjMfL8dXV6+4mqN/pTZXSWVmGuCL+THGdY1LLgHDJgwKOAyfSEwwCGv2m3PlPMeovAjre5eLQcKhO9aD+gK9MBwx9F4O67G430HFovqonbkYoDv5HvHrfi+r0Sc/vtpoBSBiO0JFxN/pSCJ+JoePLPyNVuF7NeXhYqWThZTYxOVCnFo7N1vng5DsChKX3iVk2oHp7mz8UjxTAUr1iGGr9BTiwYwxLsFjjDmGgETEoFRUUEPF/FGaWvn9Vmec8LPwLdgsbkJR161XP3vZ+JGcj1y+3xeGKv6lHQGgrzqe4lMxuvScnHyLGMYYQpYX16V53DGIUfdCSWNvzdB9XzQ4dqyb0pwSci96tLPj9wr764PVciXSAg0iyPx2A8+Omf7BkhYrjEyYt9C20EaA7Xj5onvF4FoJ5Sf3hZZG0Gn86xq+sUEftv17ujtUl3TKFMk0EjMTX8Rxapku+LR7QMSCXA5GVNosF4NGjxoH6WHwzKQLZEllWQNcFVYpqdw0Yul9CxN8mijRvuEfW4+L6pRTJg2am2D56ozhxydduncoR0L7p804Obx2sACQoNAG9rCkSZovM4iBOp1S0HL2OLb2RxySrDq/QKBaOyKyI1cpM9Vlpp+3rF3+PMDSa1zXsM1OAOk7CiAKz2Wq77MtMiDH84OZLxpjEA1giNCkCZDcniQUEk+wGqt9BvJkUCNfxtCDQHz2sMiK4frV8zhP+4fw/tI4ELBbuccgxHvGDiRxGC22JQ9+xEOEl2wr9+uMqvv6HLVseL1WGJRfeujjqXem2E5Qag13F3CAa5PZCOjPXOH3hT1XrOM8ci16ZLZhGF0w3QABkR51mK8nVI0BAqZfzB6jotnW/pmq/R+zv9+b2XJviYw+6umL215gzDeEDbNYtmR5CA9dEvi3Hu7w7y65uiHxduGEaWpZEVfmchIRF9epX9rEj+4RJabBg/S8EWbS1Qi+7MC3hbqPGHyVORyvyA7UE8NAvraqzd+ZNi/eqpbFgjbB2sRS+TGIcq/7CQI7194kfvyLRlwlM7nHbnRNoahMS+eW+58XLn3j8tM/NkqLCLBzpQZrbT7Pe7+UfdkMtyvdtXIEYAajFxPscMH2XLEfCeTyQUzkOxpEpr4hm4RgZ37o/VrcYJlLBAgEAZHlIqbDehS/UuQbtQfWseAwe4rEnvcu9rgIlNjJurayMFsO2SMHW444IDQGFUzUnIjxreIZJsKIM7QUb5EfcuS5yzADH5bMHBHnn9aj6Fmk0/eKwwCtLKpMCUH8TVeY0m/U6uYwVzgeulfMcTf5ujNbL6cYeU4BcjAjl3Vdl6+RISILtikjNveXDtH/nkDodSWfurIXiA5Ux+n7ysKO2lZp5ot5GtL6rxL0fVsOeaxa/FsOEBtfpPJRnIkwAq+E2QNIAk9BFNy6EzQ/xqUMP1DPlicCCnrMd0qs2yO9mQCRojgckejWL4fn1iO/TUSY9HQvHU59zWQJYN6WAltXZ5ruJelxxjCW4KJCZROsWAgPDBbWSVSyI946WUtsUU24U+F2cQ8KnbLiAyP+yETMFm/UNttXTESPeHHc5hO16m4V/IO6ER0GZUHk0If1i+0ofUAmfK0UIjRymGbQvJysoDbPht1WVmVay5IQbCcgMBPx0DAy6I3Q5twZjQiNWwCNIcAoaZcRHM76Gier2sRXPiNhO3IlHUwBIx4tay6+urPcJepnLg/mi8fjoikYOmtIMgBiKok2KtOqPjRl6jt6EEHlGWJxvmqHfcaafVZt6WzlhP3YhOf4IsyTjm4uPS12TvO558szU2yaz1eeSw9WuRmrFuoVanrxjvBFHsvpURPvbW+t8kUTAcIqnP2wtoJmP/ScKfwFWZnmsg+WbeDxf+KCxwnYsNb5EyKirMaWjoj8B2WPCltU01tOTRjuAcc1wlypc9HlnfB5PdsU6qlMjqbYHwuRNH5qy4h0Ypcq2ymlb6Y0EbZmSVbFdWC3lZrzpITw7cFT2Tiy6O7PMVDqksIIsm3QrAceRZr0ui4iTfm55GViaSGyAO23AhYwJyY/yOvNjRmlhU91jei4mSK0KMyASQNFLEiDRp5j4VscPNMJ2LmdJlgOMDIss4R3Faxo1OAUkflBP6OKiAzEDTu/y1Ynm0+bJMPEEZ5O57BDhZsAEXMs54mOkd3MAdHUhrTAr8zGRbU+PgH01M3GUUK7aBfoyq1K2I4nVRqY0brG+OvSRbOYsPDN0ULitAhoQraqkgQQKBbEKfT/YtKVhnG2OdXdRG4l+nrcpZMcSz3mSGqbJ1rEAhbuxdmKtjahQBfOnyZYial24mzhXkiVs2kQ+Zy1ps5VwQCwEC/dZuZ9WLP/HAms5Sk6+rX9VN0XbPv4pjTgRHqGpAOc8IbK6QvjAUxgiOim8I/Mxzcmy+8idxiFPuyM+Yk1fpVuMChD5BIwbPzhghVORASsx2xMiOhqYXtwjHpujb2tkqDZiNKbPvioHxAbBXSmkJA7yVlnmjBYdNJJeN9Lzl1leysB0om8wwe00YFLw/MHqvtzyEfaPdopNY0vRj8g7MWMwRf4Atej4d8U9vRy1WzqdifuSSRSbGnDfyvh35d8EWbQ6ifH2sB71pJZLbXhEYcmoiuFTLAUXzH5q5FpkFv7GklZ2hPEjA0Z9VyBeyz2zTYSXsfD9YsYY5CoaE0qy0uUZeEFPHIundZZN4+0XWeI3I9anF6cIzMJQmJ2GJrMifMgnJ5ys3cDI8/7o1KBtjkUaMYxWuLH8CLmCncr+iIM8u/SIPvMpXEp3aiOjdlFHTqPmoLEM3iNdh+p4Z2U4LJarFFMFLktsZ+alPLXFKlUeTrqUt9VcIq5NnVzLgTeKOxHpcXGi9kMlBB8Qo3tIdNp0XM8tg6Hsm58CAHJloJxB6ZZFygNaatqYSNX37kbLYOx8GnpLnhBgp9ZSmPYcTrjZEh+p6TG194WOkp6vovH9w23BGmyJGzklu10aYj1mgu8Ds8Zho6rYCkqr5YDeHEMae0+uRYTcUc64S8GDz11jV8o04uCoxBREo0qe/3BevMb2rFJewQr/bE2plnB8Cx8/gsYcKImwiUKzO5crGrE/dkjywrc7OU7uPmg+t6RmNTzLFMYKiIWkGFykAc9boFgwd6wDabuOyPeGx4KOIsjg2Ae1qAqVmZz5TARQU9YtCSrc81xru49EA6LmCw9AFkmywm5COWEejyoBIYn8ExTDFDIpdNZPa/mDpjJEvvRpwQZJl4Ihc1lsqEhvtoj9Ed0GtG8rasRUlJz18eiYsjuWRdLT3xxcL0r/zNJAeBvdnbB5iKaGRWWRn2E2PvscEGn+CgEy1Ozxb+wJc/TUAXTjPtFv1pqKqdFVUT83+Kam4fx45zJBctUGYNZLEp1Tq5mPKqxIa3WMlQ9NJXLGiUKIaos9O6fmsgkf3m64GWVbYNMnrtrt7rFAg1bpKVvskDuwQ/K43OstTiZ2RCs8jqr4NXqsdtADOP30tVjS4+rqJJ6W1uQEMrgZ2PYi0BMGKoLSZdJKUxUSAyz/I0F5fzHTRJPd3rbRESDGH6MrWWAvrfWazFrsRu2ln5orH3vcs0qrNi1N+p44I37TrbUSY7v+uJdatfqAo6txdMOihM1iw+tyhCPP/7XX49yW6jlAPlSKfF1T1lHsaY1Wh3KeNNA9uWmpFadKAKOoLGIoicnS41K6ooI6pkITBcRiIUJxEPI5z3sHUBNrgtr/P91KugFzuCE/660ku6DaJUwJHeqMfOuF8zasOYpIZIUK9JiPXhH2L0Jccm/oPhy77zR6d4+RlmjynQ+/lcObqW62AQjHxSz6B45F4off12PfF5dMhigKQShmIyx99qPCubDb8YFkxp924wBlOiyp1s95+0PUfV/Xa5ewUo1rBoLk03ba0zOQswRM57171WksBsNj0X83eQQRy8MYaKYUPeKyfninaK6RaLcQ12q6ofS5byZw+P7hIdb57yvStUiYanQwdk0T+BASTtP/EfBPNYke52x7qk+2M5uQJDgRQKtc/Yt47MiWFuKyMxTq5o6GOHtw2elDSAlamVf0ZtLUt48firreFJ2eBCBeMBf1cLWbmvHYxAq91C/Z3fwOPnfE9k+IT34Er6Yp7XwM4+f7RYKCnWdP2cLuNMW/s6efohPN6oqaugHqYcKmyHRxNRgWxljNRaOxPqqmoEsqxkCehkBvpDDtCgAkt8WVVVV55qb4FgG7viBmfWVNLS81zDatJaNg2HVVodY12uwR4vwbJrNVQaetCYco3pnuUoqR6fCQiQuKH4wcYA2GCwbNIQvvh6D7gE9UVKV6DvgSoko6mV/qiCxDTnEPckfKdVA6QUlQ7Q8puTQ2KmvOpdsZ+FpV+OV287nyAL4KjwiTWi9Xt3F/VcRDhuPlCoKnqP23n9xjJQ5XMN1bkE101Fe/OYUmWCVg/0Wvxh4ybXB1En9ru4LU4KHrpaOeN25MtQjB9cJUgbKrxs+OXv6Cs0R/CEm2w0mrG851JWlQ+y4zJXflckO+pav/bvP8n7FKWEhs4Q3Vh53ESwQ2c5B5Ct7zVz5YY1VsL6lh/vn+Fe/e+OzfqPoW7UGeEgq4t/awtKc22FVi6GretxIxLzp39ccxhjApYfCjzEg4+Xb6P/J8nhKMQVZWBXkAoiqU4jknq1I8WUynt/Sh3XRcDONAdVTzrmoDJPaGDYvsqmYZWWpqOEB37DlGhz4sWX1I1wyN5s+KqCsN+OGpHhRVyR3iuwxrM70eZeZ9QDeYVsnRMRuK6GLpyB9YiizXOE/8x1e5rPr/BXTtvqPeZjRLsnSMLnJnmCZ9T1OEEoMlbSU5xbJiENKipeOBmPQHl8zKrPVsYOTjexJ5AhCqh90kYo5Hbu5LTJeseAJvduzcAEo0CW8SsxTHLMD5kwdv1N7ibxVQPU5xFPayhrqZwK3F5UTP18yY1v1wX5WKjOJ0GJKVDWQgCr1sHGjIhgOg+gAmYmFL52WHuMSCPFMHLWBpKyxyVEZx/qIk5JD3DAkEcUWO+RQlOjcW3k8RcqTxLb79jKAYrB6o/S7UgTLW/NeLJX9ja5iEGMQwAMyZojP3+wKmWkMJowqd8WcM/8Gv7yaN19EIttPlNTDHTAhY9LLl7x/W2EeJJYc+z0ia3l8xWET0JCKMcY1ZMC8lu8+j8YzjNpUuuF6NfQhncX2tC4k7qsxVPz/ZkY5TS0x8WASO/6Ahgw/sixNQ2B5zsoj3qPK0uIN0eO1WGNI+mLqSJm6OeHgTLxJ+pgO4KpqL/vmTiDxuzn6McbF8hg8B0/RaWntPvKZZE/nl1sQj2bcjda73djXkBPuMGIIa4xiN/vlx9c9/TkENiIQjQHdCWNZIsTTkVOoQ54SZKDFV10Vv2rNZC+8m94bq7D7yzdlcR7mxEFgnjYXbYyrtdZcCffKqoRVmbLrhrCYdF+yTqGKLmvKJUDwzW1TpFbCMXgVJh7kqmCegIJuYEA0mC7iawwBriG2DR+4mCgmzL2HXlERGNsCFHjXl3dVo8W2a4MCPRUU2iS0kFynXR9fswnWBQwivpgAfUMVMSlCfe3BX5TP8n5/S1mAAPv+ln2NDW3i+E0B4IcHkkETsnwGCELMlktzhfbjKFymfssR79DOfrJb5WuwwF5GdzmgrH7Na+FaXRjq3MLiwlSN5HcQotV3LO4KNQ/E/NdFly1sAhGRgJhEDdEgFuKhAp3AN3zB1jp2UByd6zdaR8wxofYundmS4+BFX/yD4ncePMCDbBqmJKcoqnJP+UL+4XMQIsS+sjqMFjGTnnBDTHG0vB0CoC//FXs9TOHUm7IJYcMVfujg8OUaoxzcfQ3bfsHh1+qqoioInjMcY3jA417CzxhTZ2fHZLjCpMHtNrHSa3LNTESPXy5YDAxiAj+GyHVJIiGeDiKYLCJywKLBQPO47nINkO2NI6MCvSUU3pLlTIzzwSp8/qvufVaNYBqDQGOQ2FHpTP5CrRqnmp7reUlGhWW7FSGaw2cy46SUa2IENvYZ6fkJJ+LHlZiHKAdZHXgSMeLyRS5eSgCk2QeYxaJ4gybRYGEaYGFS+Q7xItPGgCTMnPtRmkFn67ru4JX6XiO/l7NWp8pmCBwGKcZ6ShMsZr4FfyGBaVgP89PAMjjflw2Lrd/775w62c3ch17VlVRnDNUhynfbazJ83SpzPsT3uRGdidpzCOmCvS3xZ14wLfSbzkaj4e4v5sfQzQMkTJPCNR+cGpdyrlo/5mKWBRAfaa5V2WfPvAMMXMSTWXz9Ojtz4pi5eM5MfNZmIHAl4gSz9oyRG2BKe/vGvZ+wY/lsgnXxoGHvkpKQD9XcxfCpy9ET/RDDElakCxbHZr4ziRkqI7q0TS29YMVyPaOcTClbhep1bN3fGI9rmA/MNQy7xYqauBlCd03RJ+sBlkm1+qpMk4I3EveY7rN0c87UMxd6CGoj33xI30YE3+P8nSVztnMZGBsIt4fJwTRlzTA0ga4fzNnFxhLia7CALmBKkeDcxBrZOlLJYoIxgOMsg94jraUgtjUgUIRQRKYaYK77sciC/VfDA4hxFT6NYRMJYLIj7TWhBbpsIQpBzyi0kyOcLKG6z4YVi4l1xzQnwlqkZPUDSEJmfdvaKlplYB9xmobeFG9mA5AL6njjH+Woc7KzXP2mHNiJl3+0C/kNcriWm5V9w99OM3iA9VhrtFvIcEW4huhLwT3B99SavgZLTZ770+8Y0HzQ25tTIrkpdVisIlj5Vj228XVvTUSnF4K4pXIZKjgPYXVR66h9fmmxgjOPGVZbLZZwyNaVdtP7wqtJemGg+P3Xa//2S9138yrXYcKLKXhBx8gtFrmvPnNr0bkzYVBP6m2HJY0TRJgtKTkGIFrj20OXeQHwB11lDylelkRadj7bGBynxFZYVASsKgyF5FSLVQjBQW3Z4eWRMEMw/t1D3AmTbmge9g4teBeD/Y77I2MbFOsQczhIjtRbIcv8XYGNYT/K4lguvSbO/7hs34kFsYgPFE7O/EvLSug6mgH35qYkROzBYAUxOQAgQJg1whebdNanGQR7LZmvyh3AIIKKV3GhJTkZfWePrdwOendrybvDZTSAphfs7D+3IW5/OPKpvD4XmMA9XyAzWguCN+aDbYyM4xFSQt1/zLbXndBEsDdH6nkeGKiCZamb7Pxr30jpO7lfPpeFV8t34WYo6wzteB93+WKmQWxvLQwmMaXsv6uAIh1CoAGGYXdftqC4HyS2Pcgj+XJeB62wsFustT3qYnAu1WK5GjfZ0tXhEZREpQEzA0VhHbhGjdv05fFXtCfY8J0ULjEgf3sbBHSpTofFOrLht8uBf829+U3mXn4QvKtBiNTKgL2yPLjzLUkWVjlFcO8A+G6t4iurM2GbFnMX048Q0Lop8Gh8PKLOA7yxq4Ho3C2kY0lLpC1wPPKqlVesSE5UwRJ3Geg7ZpdSTpvRQzeYBDJlThnC8AWRjk6C324t0IQ8K9OIwl3ike68nqx1RqOqix4bEW4/H+QVbJmTzk1cbcEnE3TlEmdQS0jAZSQEeHKiiPX8XSKogLvVIogGTQBED6wUZj0cGm45QCDxQDOCBMQWBnfkO6MayveYjj1QM51hAtiRlvpEJlJ6iJhZhjGmLfyKvlNNS5rYxbyLhcvFmcLSs+SLZ9X8pk/0uh8ZDA1jsMTJjPBhyaCv9LRFRnv5XjO4V+tUNtxe44UCm76tOSnTGU+TCtaVsfBr64hWixUu1wMmneZgkB25QORRlaXcBeSblkOy1AVsFCeodrP1A1viHjCnpf2dfGOMYfNIlqTVvFygu6roJ6dm4ptQNFShWKzBOtXnWr33q+6ELjpKE7idVQLa32n4o8JB8otvX3ylJiSzhSgw+POm3Vnkz629D2oLYQxUUh1lQJZ+zlsC0wK33lP7zR21XxFLETWLVYBw2HJsGYcQ++UcrMrhXbBInQC/XFAeVT3CB5O1zSCaQlMwJ92CB0OY4m2hafSw1pY2zP0mdRWhAhUbbMPCdx8KfaOaj144KhuAYtHV3CV5nAxVhKabt+K4IrhrOtjjksPMqJszZgABNHytc6Iv8nyQ7rqIAdLh8Trd21QA4b+sqWZGOLni8mRAw6QKg0inTPyEfEutOPIzfytuGdXSwfeKaqdCeJgaNw46x1ZjASLL10Rhsbh0VkBTMIFb5J64WQYPjC6joKVRlJ/kQOkTW/CisA8afDq9Jhys83Gax/p0HQm/X8izFl3+aakiw+/UAgKp7d8tFlrR500FIqIK01aaKmoB8pxE8dG9WyF84ULJDQGxSvrQpVmDhccYAIu4oOdQMJG+hzne+ZNNqJ699wZcjrE8f2/l0a45swSYgim4p9xjXAO/8aIB1+U/W5W1Q/Za3jqPqnYad4PbGe5pl3odPwlAlwa/eRD5Nq1qb3+rMZewMrfD1zUu0f2GyZve2zQB7xj7CQEdHy/lEcGC0alQlFmAW+Yt857jr8EYgK2ag1dqvgB1YMK3ObYVMLv61oYTiW9fOary2KuT7hi0CU41MkFbfMu6jIkJzEPdqQSBRry7IYPREBzYBbvFTR0KewfbvsPVsher1r4xE+IJ8MBs2csI5wvQ4e5E2bMqw48qva5xTR4S0M4DSi41l/6UY8jfidhCvT6jh1P5gj6qkO2x1GYjCkyRW+Se8x7jFhZc2kfbBlvxYYTCtIqOEJEds5fgce1ZQWMhopXZlY8NtQYRxxRQuEuCTsqqxWJbHB/iK9CsSMbzri4nuSpZxbAAbAzdNjTAk1yLYB0wBFUXGFSc7rfelVuhIQIN1u0VfI0A8sWvFsUL8pxFpboO645MoMJeSnDosgCi/XDb8McTdIs8p1xj/q9riIiMqwCyc9ldUwcU/1ixuITHIEliQKKWye0An7pQizp3AWJCMFHMP1fYzpLkQWPYXlbWXbv7gsmV0j+AwsMML0tTblC1WO56ObTxOTF4XoPvec1L3zya5zaE6XabTlymKyIeyfteO/OMwhIcq2lg1w2L3iKUbg7Sn4niOc4gxNabDPK13t6qKRjTuntzq1MNMJMQBkNIyHORtJkk60tp31nkTZeWqFjJ+Kt9vzuV+k3Mo+pLfi/1iWNcgmvA39wQpqTx/VDlekuY0ZavJSJmivXQZvP1jAUQCO3UZDXqwh7+CMac1+CnzFuuB+xdTI0ct4jMh3TXYrrq9xUuNMGyjDYMz4THK/mZMmtqIxSohzb1czlUyrUSGcRToZTfph/KW3SItrSmEiUQEjsSKp2xJE3R4ZzlDfVIos6ZoKaOBzaW/EfxBg4Q7HhSXf13DVwiQgwmAWyVBuJIphQsxHuP8zCK7HK2x64ApowcDjFo0FWVQIn2QkUlKhI8CdeY95RbZIqMev7fqbz3I+8Lyr9/UwkWZJP+wyhvyPhEpE/RuA39o5D3bywcZ+AOvsZ4jDEH5hgTGLO+qBy5AL9cc+T0Wy9x1VCq64Mv9PNbQhqha0aE7sn3lHvKfeEagjEwRsOWtP5h02EVhbhPiPxb65VaAushS53itUjNg8ESL0W76S+J7VUgFd06re4K4LwIy1w7UCw+9wFoKU6GEHRlZwk+qD6QO8AK+li8XX5koghe4v6TinUHGdyIwzIH82OwXOMGHhgTImDnaUGDxWJFkZgWTxKWbYXpLshTywlPixd6ILfY2whE1hFCE5gqVVOmiIBBwz2QjqIPbXKqp9o90tP3zHu2m3x1j+ONTDEk8y1VqSPpXS5HpmaDJb+wIIF01oY16kmT1NMD3VVvLqdNEIqNZDq5Eoc2xUhSlsiw2zpnjFvF1of8C3tPkeLFTBezjPEA/TVoDhljDEXHqVe8VJmxI6LXm0z7LEQTbBduuCNGCtbyeOsNJjCBe87nnPcc87J3ivxbzH947xNJYfE2lS9/f+9E7Q5Li/9mItRrqpLN3ARLX/P5Hy+s+6SZ5RoXYAf/fZNNt3Ikl7+7Yb2/CNYivwbhiQiEQRDILfKc82uOxxwPgb5HlQBGsUB1HYI+3k5SbM6zrVnIhl1VqzPa/AgozQkVvfGqumpQTJm5y9EzYTAGAOh65WpWOGfjHEUfYgKfY2R7i+dgitMJgCAV9qYh3pxgw+N2Pa1U0FocngFnXnQo+ROogMbgS+iy8100d8cl7GKmONJw8bxcf/eyXoqFWbU7RbBeSLNJGCCgKfN5j6+L/7quv6ZcQ7dgxqIpywxHKkCXKdccWrDLDlskduemNFbmuuNZ6Op9cBatX2O/YLxCuCtmO5zNliw1+JdKZTMei20qmMLeMa/vT+R4iTVge6ABYYzBBBYxHeFqeKsJqHF9fBrRh5TL4Mtag7okMNEAq93S9wwMpkE8fA6+nmQVnfXnXd6wcpYLNgi18TBxNWbM/M0cIIiEcEOe837c9Lz+uv/CX4LRhcYl5VjemOEFLhxsLR+vnuhcPm4Sliug2Njt7nDBM/GzGMi1J2mxzA/q9C+5BfFD5NrGiqWOd5346P5zMaPlC2muupymqeOS7+gs5P1qXtl4eyiPqin7zbAJablBz5vvx33Px61vmXeL813XD99vOOkgWLx94rSOmzkDlqdy7rA26uHbYLKFAL4eBmUvTjR3ArFr35wJHmB6rjR30QE1sF3J2qQ2RwTIxTkxY9zn9CsngphBDNK5nXFd44ExhS6Qv2B0T6GVoX8DDSO2KMSUHjSqCnivgXfRV/WGN4tls/QNz36CbA3IajyemZHequOdYscTVbl5cugWjsy+TRXgyscI6QOPeLXrRIPzoVosIj2AFv4OG7i7HrW6Uym2DSCmqR20c4F9Ea7OJnDsS+SlV15ZIB93fCGCkSQIyOmzEVxZzPG4263r4gvjkuu6aAhGnPJIMY9ZBqlkhQ795robaulH6U5gLNos1s4922norPKDIn4/NfiC9rUsftCRXGDaDxtLoSOHwRHHVTsRoMoao8SM3zYRA9JmeGKm500F1WItbhyLrtPe79qJqEE7GbHFGM0bvqBmcRrbPTHgmQt7NwgfrbOCZZMqq/7vLmfR/NNeNXbjz+v7s6JGq6rQbxuC3yj/H7SFOndir+O6AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "example['image'].resize((200, 200))" ] }, { "cell_type": "markdown", "metadata": { "id": "WMH8dh9w7I86" }, "source": [ "Let's print the corresponding label:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "execution": { "iopub.execute_input": "2023-06-21T21:46:26.671154Z", "iopub.status.busy": "2023-06-21T21:46:26.670909Z", "iopub.status.idle": "2023-06-21T21:46:26.675288Z", "shell.execute_reply": "2023-06-21T21:46:26.674714Z", "shell.execute_reply.started": "2023-06-21T21:46:26.671134Z" }, "id": "XFYtvw4I7KS2", "outputId": "6dc38e86-379e-4941-b220-d2dffb45aca6" }, "outputs": [ { "data": { "text/plain": [ "0" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "example['label']" ] }, { "cell_type": "markdown", "metadata": { "id": "f8GpxwfnJCkF" }, "source": [ "As you can see, the `label` field is not an actual string label. By default the `ClassLabel` fields are encoded into integers for convenience:" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "execution": { "iopub.execute_input": "2023-06-21T21:46:29.286342Z", "iopub.status.busy": "2023-06-21T21:46:29.286104Z", "iopub.status.idle": "2023-06-21T21:46:29.290512Z", "shell.execute_reply": "2023-06-21T21:46:29.289954Z", "shell.execute_reply.started": "2023-06-21T21:46:29.286322Z" }, "id": "n33LZz_ZMU3o", "outputId": "746f63c0-39f1-4699-f753-23bf6f394414" }, "outputs": [ { "data": { "text/plain": [ "ClassLabel(names=['AnnualCrop', 'Forest', 'HerbaceousVegetation', 'Highway', 'Industrial', 'Pasture', 'PermanentCrop', 'Residential', 'River', 'SeaLake'], id=None)" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dataset[\"train\"].features[\"label\"]" ] }, { "cell_type": "markdown", "metadata": { "id": "5LdpDtScLgeD" }, "source": [ "Let's create an `id2label` dictionary to decode them back to strings and see what they are. The inverse `label2id` will be useful too, when we load the model later." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 35 }, "execution": { "iopub.execute_input": "2023-06-21T21:46:36.144524Z", "iopub.status.busy": "2023-06-21T21:46:36.144257Z", "iopub.status.idle": "2023-06-21T21:46:36.149902Z", "shell.execute_reply": "2023-06-21T21:46:36.149336Z", "shell.execute_reply.started": "2023-06-21T21:46:36.144503Z" }, "id": "UuyXDtQqNUZW", "outputId": "f2c77233-7258-4ba1-d49b-d15d666ba8b4" }, "outputs": [ { "data": { "text/plain": [ "'HerbaceousVegetation'" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "labels = dataset[\"train\"].features[\"label\"].names\n", "label2id, id2label = dict(), dict()\n", "for i, label in enumerate(labels):\n", " label2id[label] = i\n", " id2label[i] = label\n", "\n", "id2label[2]" ] }, { "cell_type": "markdown", "metadata": { "id": "4zxoikSOjs0K" }, "source": [ "### Preprocessing the data" ] }, { "cell_type": "markdown", "metadata": { "id": "WTupOU88p1lK" }, "source": [ "Before we can feed these images to our model, we need to preprocess them. \n", "\n", "Preprocessing images typically comes down to (1) resizing them to a particular size (2) normalizing the color channels (R,G,B) using a mean and standard deviation. These are referred to as **image transformations**.\n", "\n", "In addition, one typically performs what is called **data augmentation** during training (like random cropping and flipping) to make the model more robust and achieve higher accuracy. Data augmentation is also a great technique to increase the size of the training data.\n", "\n", "We will use `torchvision.transforms` for the image transformations/data augmentation in this tutorial, but note that one can use any other package (like [albumentations](https://albumentations.ai/), [imgaug](https://github.com/aleju/imgaug), [Kornia](https://kornia.readthedocs.io/en/latest/) etc.).\n", "\n", "To make sure we (1) resize to the appropriate size (2) use the appropriate image mean and standard deviation for the model architecture we are going to use, we instantiate what is called a feature extractor with the `AutoFeatureExtractor.from_pretrained` method.\n", "\n", "This feature extractor is a minimal preprocessor that can be used to prepare images for inference." ] }, { "cell_type": "code", "execution_count": 70, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 352, "referenced_widgets": [ "fffb14323cbb485fbc251377f0df82be", "a99c93dcd98943aa9af6d6ae9cacb342", "36cb688ec8c048b9b67feeb978d1ae7e", "db6d4fa6175348ba9cb7e12d755c1b70", "153ac1ceef154fb1a7d080fb4b00ca67", "d70e71438f0945319eec5f2eedf804e5", "1a13206aae6346cfb744f0edca13dfae", "41556a6c7cf545ac9355482538ac814a", "7ce25ef57ec94306a781b46074f137fe", "822db9328a764186b4c71dc3a0788025", "2ff8584bc3ba4faa8dd305b4aa4e1023" ] }, "execution": { "iopub.execute_input": "2023-06-21T22:59:47.004510Z", "iopub.status.busy": "2023-06-21T22:59:47.004255Z", "iopub.status.idle": "2023-06-21T22:59:47.130381Z", "shell.execute_reply": "2023-06-21T22:59:47.129737Z", "shell.execute_reply.started": "2023-06-21T22:59:47.004489Z" }, "id": "G1bX4lGAO_d9", "outputId": "004fa57f-dd57-47d1-f1f6-a98e6adba377" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d8a16f2508ee4414b29f1a87ce083632", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Downloading (…)rocessor_config.json: 0%| | 0.00/243 [00:00,\n", " 'label': 0,\n", " 'pixel_values': tensor([[[2.2480, 2.2480, 2.2480, ..., 2.2480, 2.2480, 2.2480],\n", " [2.2480, 2.2480, 2.2480, ..., 2.2480, 2.2480, 2.2480],\n", " [2.2480, 2.2480, 2.2480, ..., 2.2480, 2.2480, 2.2480],\n", " ...,\n", " [2.2480, 2.2480, 2.2480, ..., 2.2480, 2.2480, 2.2480],\n", " [2.2480, 2.2480, 2.2480, ..., 2.2480, 2.2480, 2.2480],\n", " [2.2480, 2.2480, 2.2480, ..., 2.2480, 2.2480, 2.2480]],\n", " \n", " [[1.2031, 1.2031, 1.2031, ..., 1.1504, 1.1504, 1.1504],\n", " [1.2031, 1.2031, 1.2031, ..., 1.1504, 1.1504, 1.1504],\n", " [1.2031, 1.2031, 1.2031, ..., 1.1504, 1.1504, 1.1504],\n", " ...,\n", " [1.2383, 1.2383, 1.2383, ..., 1.4307, 1.4307, 1.4307],\n", " [1.2383, 1.2383, 1.2383, ..., 1.4307, 1.4307, 1.4307],\n", " [1.2383, 1.2383, 1.2383, ..., 1.4307, 1.4307, 1.4307]],\n", " \n", " [[1.0361, 1.0361, 1.0361, ..., 1.0361, 1.0361, 1.0361],\n", " [1.0361, 1.0361, 1.0361, ..., 1.0361, 1.0361, 1.0361],\n", " [1.0361, 1.0361, 1.0361, ..., 1.0361, 1.0361, 1.0361],\n", " ...,\n", " [1.0195, 1.0195, 1.0195, ..., 1.1758, 1.1758, 1.1758],\n", " [1.0195, 1.0195, 1.0195, ..., 1.1758, 1.1758, 1.1758],\n", " [1.0195, 1.0195, 1.0195, ..., 1.1758, 1.1758, 1.1758]]],\n", " dtype=torch.float16)}" ] }, "execution_count": 74, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_ds[0]" ] }, { "cell_type": "markdown", "metadata": { "id": "HOXmyPQ76Qv9" }, "source": [ "### Training the model" ] }, { "cell_type": "markdown", "metadata": { "id": "0a-2YT7O6ayC" }, "source": [ "Now that our data is ready, we can download the pretrained model and fine-tune it. For classification we use the `AutoModelForImageClassification` class. Calling the `from_pretrained` method on it will download and cache the weights for us. As the label ids and the number of labels are dataset dependent, we pass `label2id`, and `id2label` alongside the `model_checkpoint` here. This will make sure a custom classification head will be created (with a custom number of output neurons).\n", "\n", "NOTE: in case you're planning to fine-tune an already fine-tuned checkpoint, like [facebook/convnext-tiny-224](https://huggingface.co./facebook/convnext-tiny-224) (which has already been fine-tuned on ImageNet-1k), then you need to provide the additional argument `ignore_mismatched_sizes=True` to the `from_pretrained` method. This will make sure the output head (with 1000 output neurons) is thrown away and replaced by a new, randomly initialized classification head that includes a custom number of output neurons. You don't need to specify this argument in case the pre-trained model doesn't include a head. " ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 208, "referenced_widgets": [ "4dbffab93ea2497fa5e7d4a710230034", "2cd78732f3114043aab3b2c3b4216a18", "de3ae0562d2344dd9e2055015e160a2c", "d74498ae614e412bbb47f33a830be7ba", "cdd3559a361e469bb26501c272e563ba", "45b2401d4c2042eeaa566aecaab3bd8f", "a688efdb9d114f4c91cac8a70f7322b0", "5830dd2340a64f1a874332b0b1e32ec7", "1ec40e8e33474dcb85bbf394eefc1b56", "e1f9aa53a0d4470a98206fb0322730b3", "c94af069c1674edf9b372c350d9b9c51", "fe0a9c76f4de441d9bd8de7394ffbcda", "21aa0de2c357460c926cd51ef2706ab1", "35274b3dd11c4d7ebe7912d04b706ebe", "76fde2f98f774466bb826c5cc3f90657", "edc7e95a57304afa9fb626e23e334e7b", "29c5dda2d3464ab0b6e3f5667dab9185", "d8fbaac013d24e0b9be1d0969bede5c1", "a721cfb1ad374676b542167485d7f462", "d7c49b2687b647a882348bd671ac8045", "01c63ad383b44a238cb7d931bdbc426e", "0e2c6500a66e42b19df8306e84229b14" ] }, "execution": { "iopub.execute_input": "2023-06-21T22:59:58.512805Z", "iopub.status.busy": "2023-06-21T22:59:58.512423Z", "iopub.status.idle": "2023-06-21T22:59:59.769835Z", "shell.execute_reply": "2023-06-21T22:59:59.769267Z", "shell.execute_reply.started": "2023-06-21T22:59:58.512778Z" }, "id": "X9DDujL0q1ac", "outputId": "8328aab3-ff64-4dc7-d395-eaaa746fd0fa" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Some weights of the model checkpoint at internetoftim/dinov2-base were not used when initializing ViTForImageClassification: ['encoder.layer.1.norm1.weight', 'encoder.layer.4.mlp.fc1.bias', 'encoder.layer.5.mlp.fc2.bias', 'encoder.layer.9.norm1.weight', 'encoder.layer.7.norm1.weight', 'encoder.layer.0.layer_scale2.lambda1', 'encoder.layer.4.mlp.fc2.bias', 'encoder.layer.1.norm2.bias', 'encoder.layer.8.mlp.fc2.bias', 'encoder.layer.7.mlp.fc2.bias', 'encoder.layer.4.norm1.weight', 'encoder.layer.9.layer_scale1.lambda1', 'encoder.layer.2.layer_scale1.lambda1', 'encoder.layer.10.norm1.bias', 'encoder.layer.9.norm1.bias', 'encoder.layer.4.layer_scale1.lambda1', 'encoder.layer.2.norm1.weight', 'encoder.layer.8.norm2.weight', 'encoder.layer.9.mlp.fc1.bias', 'encoder.layer.10.norm2.weight', 'encoder.layer.9.mlp.fc2.bias', 'encoder.layer.1.norm2.weight', 'encoder.layer.5.norm1.bias', 'encoder.layer.11.norm1.bias', 'encoder.layer.5.mlp.fc1.bias', 'encoder.layer.11.layer_scale2.lambda1', 'encoder.layer.11.norm2.weight', 'encoder.layer.6.mlp.fc2.weight', 'encoder.layer.7.norm1.bias', 'encoder.layer.3.norm1.weight', 'encoder.layer.8.norm2.bias', 'encoder.layer.0.mlp.fc2.bias', 'encoder.layer.1.mlp.fc1.weight', 'encoder.layer.2.norm1.bias', 'encoder.layer.7.mlp.fc1.weight', 'encoder.layer.3.norm2.weight', 'encoder.layer.8.layer_scale1.lambda1', 'encoder.layer.10.layer_scale1.lambda1', 'encoder.layer.8.norm1.weight', 'encoder.layer.6.norm1.weight', 'encoder.layer.2.mlp.fc2.weight', 'encoder.layer.1.norm1.bias', 'encoder.layer.7.layer_scale1.lambda1', 'encoder.layer.8.mlp.fc1.bias', 'encoder.layer.11.layer_scale1.lambda1', 'encoder.layer.10.mlp.fc1.bias', 'encoder.layer.3.mlp.fc1.bias', 'encoder.layer.5.layer_scale1.lambda1', 'encoder.layer.4.layer_scale2.lambda1', 'encoder.layer.11.mlp.fc2.bias', 'encoder.layer.9.mlp.fc2.weight', 'encoder.layer.7.norm2.weight', 'encoder.layer.1.mlp.fc2.weight', 'encoder.layer.1.layer_scale2.lambda1', 'encoder.layer.5.norm2.bias', 'encoder.layer.6.norm1.bias', 'encoder.layer.11.mlp.fc2.weight', 'encoder.layer.0.norm2.bias', 'encoder.layer.9.layer_scale2.lambda1', 'encoder.layer.8.norm1.bias', 'encoder.layer.9.mlp.fc1.weight', 'encoder.layer.2.mlp.fc1.weight', 'encoder.layer.1.mlp.fc2.bias', 'encoder.layer.4.norm1.bias', 'encoder.layer.3.mlp.fc2.bias', 'encoder.layer.10.norm1.weight', 'encoder.layer.6.layer_scale1.lambda1', 'encoder.layer.8.mlp.fc2.weight', 'encoder.layer.5.layer_scale2.lambda1', 'encoder.layer.6.layer_scale2.lambda1', 'encoder.layer.0.mlp.fc1.bias', 'encoder.layer.6.mlp.fc1.weight', 'encoder.layer.6.norm2.bias', 'encoder.layer.8.layer_scale2.lambda1', 'encoder.layer.10.mlp.fc2.weight', 'encoder.layer.0.mlp.fc1.weight', 'encoder.layer.11.mlp.fc1.weight', 'encoder.layer.11.norm1.weight', 'encoder.layer.2.norm2.weight', 'encoder.layer.6.mlp.fc2.bias', 'encoder.layer.0.mlp.fc2.weight', 'encoder.layer.2.norm2.bias', 'encoder.layer.4.mlp.fc1.weight', 'encoder.layer.2.mlp.fc1.bias', 'encoder.layer.4.norm2.bias', 'encoder.layer.0.norm1.weight', 'encoder.layer.3.layer_scale2.lambda1', 'encoder.layer.7.norm2.bias', 'encoder.layer.10.layer_scale2.lambda1', 'encoder.layer.7.mlp.fc1.bias', 'encoder.layer.7.layer_scale2.lambda1', 'encoder.layer.6.norm2.weight', 'encoder.layer.8.mlp.fc1.weight', 'encoder.layer.3.mlp.fc1.weight', 'encoder.layer.4.norm2.weight', 'encoder.layer.2.mlp.fc2.bias', 'encoder.layer.3.norm1.bias', 'encoder.layer.10.mlp.fc2.bias', 'encoder.layer.0.norm1.bias', 'encoder.layer.10.norm2.bias', 'encoder.layer.1.mlp.fc1.bias', 'encoder.layer.0.layer_scale1.lambda1', 'encoder.layer.10.mlp.fc1.weight', 'encoder.layer.5.norm1.weight', 'encoder.layer.11.norm2.bias', 'encoder.layer.7.mlp.fc2.weight', 'encoder.layer.6.mlp.fc1.bias', 'encoder.layer.11.mlp.fc1.bias', 'encoder.layer.2.layer_scale2.lambda1', 'encoder.layer.5.mlp.fc1.weight', 'encoder.layer.3.layer_scale1.lambda1', 'encoder.layer.3.norm2.bias', 'encoder.layer.4.mlp.fc2.weight', 'encoder.layer.9.norm2.weight', 'encoder.layer.0.norm2.weight', 'encoder.layer.9.norm2.bias', 'encoder.layer.1.layer_scale1.lambda1', 'encoder.layer.5.norm2.weight', 'encoder.layer.3.mlp.fc2.weight', 'encoder.layer.5.mlp.fc2.weight']\n", "- This IS expected if you are initializing ViTForImageClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", "- This IS NOT expected if you are initializing ViTForImageClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", "Some weights of ViTForImageClassification were not initialized from the model checkpoint at internetoftim/dinov2-base and are newly initialized: ['encoder.layer.8.intermediate.dense.weight', 'encoder.layer.4.output.dense.weight', 'encoder.layer.6.intermediate.dense.weight', 'encoder.layer.0.output.dense.weight', 'encoder.layer.9.layernorm_before.bias', 'encoder.layer.0.layernorm_after.bias', 'encoder.layer.9.intermediate.dense.bias', 'encoder.layer.1.layernorm_before.weight', 'encoder.layer.2.intermediate.dense.weight', 'encoder.layer.6.intermediate.dense.bias', 'encoder.layer.7.output.dense.bias', 'encoder.layer.8.layernorm_after.bias', 'encoder.layer.10.output.dense.weight', 'encoder.layer.11.layernorm_before.bias', 'encoder.layer.3.output.dense.weight', 'encoder.layer.2.layernorm_after.weight', 'encoder.layer.10.intermediate.dense.weight', 'encoder.layer.0.layernorm_before.bias', 'encoder.layer.3.layernorm_before.weight', 'encoder.layer.1.output.dense.weight', 'encoder.layer.4.layernorm_before.bias', 'encoder.layer.4.output.dense.bias', 'encoder.layer.9.output.dense.bias', 'encoder.layer.1.layernorm_after.weight', 'encoder.layer.2.output.dense.weight', 'encoder.layer.3.intermediate.dense.weight', 'encoder.layer.6.layernorm_after.bias', 'classifier.weight', 'encoder.layer.6.output.dense.bias', 'encoder.layer.9.layernorm_after.bias', 'encoder.layer.5.layernorm_after.weight', 'encoder.layer.6.output.dense.weight', 'encoder.layer.6.layernorm_before.weight', 'encoder.layer.2.layernorm_after.bias', 'encoder.layer.7.intermediate.dense.bias', 'encoder.layer.7.intermediate.dense.weight', 'encoder.layer.5.output.dense.weight', 'encoder.layer.11.output.dense.weight', 'encoder.layer.2.layernorm_before.bias', 'encoder.layer.0.layernorm_before.weight', 'encoder.layer.4.intermediate.dense.bias', 'encoder.layer.4.layernorm_after.weight', 'encoder.layer.5.layernorm_before.bias', 'encoder.layer.11.layernorm_before.weight', 'encoder.layer.9.output.dense.weight', 'encoder.layer.11.layernorm_after.bias', 'encoder.layer.0.intermediate.dense.bias', 'encoder.layer.5.layernorm_after.bias', 'encoder.layer.7.layernorm_after.bias', 'encoder.layer.4.layernorm_after.bias', 'encoder.layer.5.layernorm_before.weight', 'encoder.layer.10.layernorm_before.bias', 'encoder.layer.0.intermediate.dense.weight', 'encoder.layer.7.layernorm_before.bias', 'encoder.layer.3.layernorm_before.bias', 'encoder.layer.7.output.dense.weight', 'encoder.layer.2.intermediate.dense.bias', 'encoder.layer.8.output.dense.weight', 'classifier.bias', 'encoder.layer.10.layernorm_before.weight', 'encoder.layer.5.output.dense.bias', 'encoder.layer.0.output.dense.bias', 'encoder.layer.6.layernorm_before.bias', 'encoder.layer.2.layernorm_before.weight', 'encoder.layer.9.layernorm_after.weight', 'encoder.layer.3.intermediate.dense.bias', 'encoder.layer.11.layernorm_after.weight', 'encoder.layer.3.layernorm_after.bias', 'encoder.layer.1.output.dense.bias', 'encoder.layer.7.layernorm_before.weight', 'encoder.layer.4.intermediate.dense.weight', 'encoder.layer.1.layernorm_before.bias', 'encoder.layer.10.layernorm_after.weight', 'encoder.layer.5.intermediate.dense.weight', 'encoder.layer.3.layernorm_after.weight', 'encoder.layer.10.layernorm_after.bias', 'encoder.layer.1.intermediate.dense.bias', 'encoder.layer.8.output.dense.bias', 'encoder.layer.8.intermediate.dense.bias', 'encoder.layer.8.layernorm_after.weight', 'encoder.layer.9.intermediate.dense.weight', 'encoder.layer.1.intermediate.dense.weight', 'encoder.layer.11.intermediate.dense.bias', 'encoder.layer.11.output.dense.bias', 'encoder.layer.4.layernorm_before.weight', 'encoder.layer.0.layernorm_after.weight', 'encoder.layer.5.intermediate.dense.bias', 'encoder.layer.11.intermediate.dense.weight', 'encoder.layer.7.layernorm_after.weight', 'encoder.layer.9.layernorm_before.weight', 'encoder.layer.6.layernorm_after.weight', 'encoder.layer.2.output.dense.bias', 'encoder.layer.10.output.dense.bias', 'encoder.layer.3.output.dense.bias', 'encoder.layer.8.layernorm_before.bias', 'encoder.layer.10.intermediate.dense.bias', 'encoder.layer.8.layernorm_before.weight', 'encoder.layer.1.layernorm_after.bias']\n", "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" ] } ], "source": [ "from transformers import AutoModelForImageClassification\n", "from optimum.graphcore import IPUTrainingArguments, IPUTrainer, IPUConfig\n", "\n", "model = AutoModelForImageClassification.from_pretrained(\n", " model_checkpoint, \n", " label2id=label2id,\n", " id2label=id2label,\n", " ignore_mismatched_sizes = True, # provide this in case you're planning to fine-tune an already fine-tuned checkpoint\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "U8EmET_f6458" }, "source": [ "The warning is telling us we are throwing away some weights (the weights and bias of the `classifier` layer) and randomly initializing some other (the weights and bias of a new `classifier` layer). This is expected in this case, because we are adding a new head for which we don't have pretrained weights, so the library warns us we should fine-tune this model before using it for inference, which is exactly what we are going to do." ] }, { "cell_type": "markdown", "metadata": { "id": "FEfyuq1U8hDT" }, "source": [ "To instantiate an `IPUTrainer`, we will need to define the training configuration and the evaluation metric. The most important is the `IPUTrainingArguments`, which is a class that contains all the attributes to customize the training. It requires one folder name, which will be used to save the checkpoints of the model.\n", "\n", "Most of the training arguments are pretty self-explanatory, but one that is quite important here is `remove_unused_columns=False`. This one will drop any features not used by the model's call function. By default it's `True` because usually it's ideal to drop unused feature columns, making it easier to unpack inputs into the model's call function. But, in our case, we need the unused features ('image' in particular) in order to create 'pixel_values'." ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "execution": { "iopub.execute_input": "2023-06-21T23:00:01.323255Z", "iopub.status.busy": "2023-06-21T23:00:01.322888Z", "iopub.status.idle": "2023-06-21T23:00:01.327878Z", "shell.execute_reply": "2023-06-21T23:00:01.327069Z", "shell.execute_reply.started": "2023-06-21T23:00:01.323235Z" }, "id": "xc_MTm0Ks3DF" }, "outputs": [], "source": [ "model_name = model_checkpoint.split(\"/\")[-1]\n", "\n", "args = IPUTrainingArguments(\n", " f\"{model_name}-finetuned-eurosat\",\n", " remove_unused_columns=False,\n", " evaluation_strategy = \"epoch\",\n", " save_strategy = \"epoch\",\n", " learning_rate=5e-5,\n", " per_device_train_batch_size=micro_batch_size,\n", " per_device_eval_batch_size=micro_batch_size,\n", " gradient_accumulation_steps=gradient_accumulation_steps,\n", " num_train_epochs=3,\n", " warmup_ratio=0.1,\n", " logging_steps=10,\n", " load_best_model_at_end=True,\n", " metric_for_best_model=\"accuracy\",\n", " pod_type=pod_type,\n", " dataloader_drop_last=True,\n", " push_to_hub=False,\n", " # model_hub_id = f\"username-or-organization/{model_name}-finetuned-eurosat\"\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "xi6JYNYs8lJO" }, "source": [ "Here we set the evaluation to be done at the end of each epoch, tweak the learning rate, use the `micro_batch_size`, `gradient_accumulation_steps` and `pod_type` to determine the global batch size, which we defined at the top of the notebook, and customize the number of epochs for training, as well as the weight decay. Since the best model might not be the one at the end of training, we ask the `IPUTrainer` to load the best model it saved (according to `metric_name`) at the end of training.\n", "\n", "The last argument `push_to_hub` allows the Trainer to push the model to the [Hub](https://huggingface.co./models) regularly during training. Remove it if you didn't follow the installation steps at the top of the notebook. If you want to save your model locally with a name that is different from the name of the repository, or if you want to push your model under an organization and not your name space, use the `hub_model_id` argument to set the repo name (it needs to be the full name, including your namespace: for instance `\"nielsr/vit-finetuned-cifar10\"` or `\"huggingface/nielsr/vit-finetuned-cifar10\"`)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We also need to define the `IPUConfig`, which is a class that specifies attributes and configuration parameters to compile and put the model on the device. We initialize it with one config name or path, which we set earlier:" ] }, { "cell_type": "code", "execution_count": 77, "metadata": { "execution": { "iopub.execute_input": "2023-06-21T23:00:05.868625Z", "iopub.status.busy": "2023-06-21T23:00:05.868364Z", "iopub.status.idle": "2023-06-21T23:00:05.916953Z", "shell.execute_reply": "2023-06-21T23:00:05.916304Z", "shell.execute_reply.started": "2023-06-21T23:00:05.868605Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "loading configuration file ipu_config.json from cache at /tmp/huggingface_caches/checkpoints/models--Graphcore--vit-base-ipu/snapshots/8fd7e5acc6387ac620519921c77a0f69893843d3/ipu_config.json\n", "`replicated_tensor_sharding` is not used when `replication_factor=1`\n", "IPUConfig {\n", " \"_mode\": \"training\",\n", " \"auto_loss_scaling\": false,\n", " \"device_iterations\": 1,\n", " \"embedding_serialization_factor\": 1,\n", " \"enable_half_partials\": true,\n", " \"executable_cache_dir\": \"/tmp/exe_cache/3.2.1/image_classification\",\n", " \"execute_encoder_on_cpu_for_generation\": false,\n", " \"gradient_accumulation_steps\": 128,\n", " \"inference_device_iterations\": 4,\n", " \"inference_embedding_serialization_factor\": 1,\n", " \"inference_ipus_per_replica\": 4,\n", " \"inference_layers_per_ipu\": [\n", " 3,\n", " 3,\n", " 3,\n", " 3\n", " ],\n", " \"inference_matmul_proportion\": 0.3,\n", " \"inference_projection_serialization_factor\": 1,\n", " \"inference_replication_factor\": 1,\n", " \"inference_serialized_embedding_splits_per_ipu\": null,\n", " \"inference_serialized_projection_splits_per_ipu\": null,\n", " \"ipus_per_replica\": 4,\n", " \"layers_per_ipu\": [\n", " 3,\n", " 3,\n", " 3,\n", " 3\n", " ],\n", " \"matmul_proportion\": 0.3,\n", " \"optimizer_state_offchip\": true,\n", " \"optimum_version\": \"1.6.1\",\n", " \"output_mode\": \"final\",\n", " \"projection_serialization_factor\": 1,\n", " \"recompute_checkpoint_every_layer\": true,\n", " \"replicated_tensor_sharding\": true,\n", " \"replication_factor\": 1,\n", " \"seed\": null,\n", " \"serialized_embedding_splits_per_ipu\": null,\n", " \"serialized_projection_splits_per_ipu\": null,\n", " \"transformers_version\": \"4.25.1\"\n", "}\n", "\n" ] } ], "source": [ "ipu_config = IPUConfig.from_pretrained(ipu_config_name, executable_cache_dir=executable_cache_dir)" ] }, { "cell_type": "markdown", "metadata": { "id": "2VE_HSha9RZk" }, "source": [ "Next, we need to define a function for how to compute the metrics from the predictions, which will just use the `metric` we loaded earlier. The only preprocessing we have to do is to take the argmax of our predicted logits:" ] }, { "cell_type": "code", "execution_count": 78, "metadata": { "execution": { "iopub.execute_input": "2023-06-21T23:00:10.964446Z", "iopub.status.busy": "2023-06-21T23:00:10.964194Z", "iopub.status.idle": "2023-06-21T23:00:10.968402Z", "shell.execute_reply": "2023-06-21T23:00:10.967765Z", "shell.execute_reply.started": "2023-06-21T23:00:10.964426Z" }, "id": "EVWfiBuv2uCS" }, "outputs": [], "source": [ "import numpy as np\n", "\n", "# the compute_metrics function takes a Named Tuple as input:\n", "# predictions, which are the logits of the model as Numpy arrays,\n", "# and label_ids, which are the ground-truth labels as Numpy arrays.\n", "def compute_metrics(eval_pred):\n", " \"\"\"Computes accuracy on a batch of predictions\"\"\"\n", " predictions = np.argmax(eval_pred.predictions, axis=1)\n", " return metric.compute(predictions=predictions, references=eval_pred.label_ids)" ] }, { "cell_type": "markdown", "metadata": { "id": "Y0PqjzHQVutb" }, "source": [ "We also define a `collate_fn`, which will be used to batch examples together.\n", "Each batch consists of 2 keys, namely `pixel_values` and `labels`." ] }, { "cell_type": "code", "execution_count": 79, "metadata": { "execution": { "iopub.execute_input": "2023-06-21T23:00:12.865537Z", "iopub.status.busy": "2023-06-21T23:00:12.865284Z", "iopub.status.idle": "2023-06-21T23:00:12.869397Z", "shell.execute_reply": "2023-06-21T23:00:12.868811Z", "shell.execute_reply.started": "2023-06-21T23:00:12.865518Z" }, "id": "u0WcwsX7rW9w" }, "outputs": [], "source": [ "def collate_fn(examples):\n", " pixel_values = torch.stack([example[\"pixel_values\"] for example in examples])\n", " labels = torch.tensor([example[\"label\"] for example in examples])\n", " return {\"pixel_values\": pixel_values, \"labels\": labels}" ] }, { "cell_type": "markdown", "metadata": { "id": "yTF0dWw49fB9" }, "source": [ "Then we just need to pass all of this along with our datasets to the `IPUTrainer`:" ] }, { "cell_type": "code", "execution_count": 80, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "execution": { "iopub.execute_input": "2023-06-21T23:00:14.715230Z", "iopub.status.busy": "2023-06-21T23:00:14.714980Z", "iopub.status.idle": "2023-06-21T23:00:16.672606Z", "shell.execute_reply": "2023-06-21T23:00:16.671909Z", "shell.execute_reply.started": "2023-06-21T23:00:14.715211Z" }, "id": "McVoaCPr3Cj-", "outputId": "11ebe687-5cd1-495a-a809-3b8c68aaeb43" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Overriding IPU config: gradient_accumulation_steps=32\n", "---------- Device Allocation -----------\n", "Embedding --> IPU 0\n", "Encoder 0 --> IPU 0\n", "Encoder 1 --> IPU 0\n", "Encoder 2 --> IPU 0\n", "Encoder 3 --> IPU 1\n", "Encoder 4 --> IPU 1\n", "Encoder 5 --> IPU 1\n", "Encoder 6 --> IPU 2\n", "Encoder 7 --> IPU 2\n", "Encoder 8 --> IPU 2\n", "Encoder 9 --> IPU 3\n", "Encoder 10 --> IPU 3\n", "Encoder 11 --> IPU 3\n", "Head --> IPU 3\n", "---------------------------------------\n" ] } ], "source": [ "trainer = IPUTrainer(\n", " model,\n", " ipu_config,\n", " args,\n", " train_dataset=train_ds,\n", " eval_dataset=val_ds,\n", " tokenizer=feature_extractor,\n", " compute_metrics=compute_metrics,\n", " data_collator=collate_fn,\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "ltokP9mO9pjI" }, "source": [ "You might wonder why we pass along the `feature_extractor` as a tokenizer when we already preprocessed our data. This is only to make sure the feature extractor configuration file (stored as JSON) will also be uploaded to the repo on the hub." ] }, { "cell_type": "markdown", "metadata": { "id": "9j6VNsGP97LG" }, "source": [ "Now we can finetune our model by calling the `train` method:" ] }, { "cell_type": "markdown", "metadata": { "id": "Vyb-58x_-A0e" }, "source": [ "We can check with the `evaluate` method that our `IPUTrainer` did reload the best model properly (if it was not the last one):" ] }, { "cell_type": "code", "execution_count": 81, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000, "referenced_widgets": [ "398c087633254bcaaf781aa57e982dd6", "f200c07beda8456a92e897ee00b5fde5", "1f66f9bb6f374902ac87747b55fdede6", "fb8b8971f3714b16ac699a0bb9435dae", "b14bfd13a6294a9cb6f8226d43b2ba3d", "1de73b85fab34677b26258cf81b1f12f", "5ad22e5e6c7c464c8ac943b9730954a1", "dfe11154745547058a1158a2e8c7d620", "950d18b052794bdd85e9981dba17d253", "a98957fcd9204fdc83a14bb710da2fd8", "6da1bfe89c754d74868af73bff068ebb", "898560cd6bca49d7bbc530070737e348", "cb6c133b4a524edd98b35f43d4feef0e", "85aa3489e82442d38d387e9a1df8d920", "51b8c526e3594d3cac19c923160d082c", "0f5ce894e0ee47c6af02f709256ac641", "56ec636f14e749e1abc2d910c4ee08d7", "97d07155fabd42e580e130b4f1b50bff", "9d3a80f84461463da2d7135da04d0b8d", "dd7bebb0ca9c473aab467b9c22105bf8", "536f6919a19d435e9f19055eacdf143e", "111d49a2cbd142b79d50252805c79285" ] }, "execution": { "iopub.execute_input": "2023-06-21T23:00:20.836556Z", "iopub.status.busy": "2023-06-21T23:00:20.836306Z", "iopub.status.idle": "2023-06-21T23:33:04.846744Z", "shell.execute_reply": "2023-06-21T23:33:04.846019Z", "shell.execute_reply.started": "2023-06-21T23:00:20.836536Z" }, "id": "Pps61vF_4QaH", "outputId": "b79a2940-d366-49f6-ec9c-d4b862485777" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "---------- Device Allocation -----------\n", "Embedding --> IPU 0\n", "Encoder 0 --> IPU 0\n", "Encoder 1 --> IPU 0\n", "Encoder 2 --> IPU 0\n", "Encoder 3 --> IPU 1\n", "Encoder 4 --> IPU 1\n", "Encoder 5 --> IPU 1\n", "Encoder 6 --> IPU 2\n", "Encoder 7 --> IPU 2\n", "Encoder 8 --> IPU 2\n", "Encoder 9 --> IPU 3\n", "Encoder 10 --> IPU 3\n", "Encoder 11 --> IPU 3\n", "Head --> IPU 3\n", "---------------------------------------\n", "Compiling Model...\n", "Graph compilation: 100%|██████████| 100/100 [06:33<00:00]\n", "Compiled/Loaded model in 416.84938575606793 secs\n", "***** Running training *****\n", " Num examples = 24300\n", " Num epochs = 3\n", " Instantaneous batch size per device = 1\n", " Total training batch size (w. parallel, distributed & accumulation) = 32\n", " Gradient accumulation steps = 32\n", " Total optimization steps = 2277\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c04a2147cdcd4bdd91f12badc91cf321", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/2277 [00:00 IPU 0\n", "Encoder 0 --> IPU 0\n", "Encoder 1 --> IPU 0\n", "Encoder 2 --> IPU 0\n", "Encoder 3 --> IPU 1\n", "Encoder 4 --> IPU 1\n", "Encoder 5 --> IPU 1\n", "Encoder 6 --> IPU 2\n", "Encoder 7 --> IPU 2\n", "Encoder 8 --> IPU 2\n", "Encoder 9 --> IPU 3\n", "Encoder 10 --> IPU 3\n", "Encoder 11 --> IPU 3\n", "Head --> IPU 3\n", "---------------------------------------\n", "Compiling Model...\n", "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py:1432: UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details.\n", " warnings.warn(\n", "\n", "Graph compilation: 0%| | 0/100 [00:00 IPU 0\n", "Encoder 0 --> IPU 0\n", "Encoder 1 --> IPU 0\n", "Encoder 2 --> IPU 0\n", "Encoder 3 --> IPU 1\n", "Encoder 4 --> IPU 1\n", "Encoder 5 --> IPU 1\n", "Encoder 6 --> IPU 2\n", "Encoder 7 --> IPU 2\n", "Encoder 8 --> IPU 2\n", "Encoder 9 --> IPU 3\n", "Encoder 10 --> IPU 3\n", "Encoder 11 --> IPU 3\n", "Head --> IPU 3\n", "---------------------------------------\n", "Configuration saved in dinov2-base-finetuned-eurosat/checkpoint-759/ipu_config.json\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "{'loss': 1.1141, 'learning_rate': 3.7018057589067836e-05, 'epoch': 1.0}\n", "{'loss': 1.0944, 'learning_rate': 3.677403611517814e-05, 'epoch': 1.01}\n", "{'loss': 0.6002, 'learning_rate': 3.653001464128844e-05, 'epoch': 1.03}\n", "{'loss': 0.9093, 'learning_rate': 3.6285993167398734e-05, 'epoch': 1.04}\n", "{'loss': 0.9918, 'learning_rate': 3.604197169350903e-05, 'epoch': 1.05}\n", "{'loss': 0.6841, 'learning_rate': 3.579795021961933e-05, 'epoch': 1.07}\n", "{'loss': 0.7798, 'learning_rate': 3.5553928745729625e-05, 'epoch': 1.08}\n", "{'loss': 0.8287, 'learning_rate': 3.530990727183993e-05, 'epoch': 1.09}\n", "{'loss': 0.3689, 'learning_rate': 3.506588579795022e-05, 'epoch': 1.11}\n", "{'loss': 0.7576, 'learning_rate': 3.482186432406052e-05, 'epoch': 1.12}\n", "{'loss': 1.3806, 'learning_rate': 3.457784285017082e-05, 'epoch': 1.13}\n", "{'loss': 0.6302, 'learning_rate': 3.4333821376281116e-05, 'epoch': 1.15}\n", "{'loss': 1.0594, 'learning_rate': 3.408979990239141e-05, 'epoch': 1.16}\n", "{'loss': 0.472, 'learning_rate': 3.384577842850171e-05, 'epoch': 1.17}\n", "{'loss': 0.9081, 'learning_rate': 3.360175695461201e-05, 'epoch': 1.19}\n", "{'loss': 0.8475, 'learning_rate': 3.335773548072231e-05, 'epoch': 1.2}\n", "{'loss': 0.7162, 'learning_rate': 3.31137140068326e-05, 'epoch': 1.21}\n", "{'loss': 1.6871, 'learning_rate': 3.2869692532942905e-05, 'epoch': 1.23}\n", "{'loss': 0.6967, 'learning_rate': 3.2625671059053195e-05, 'epoch': 1.24}\n", "{'loss': 0.813, 'learning_rate': 3.23816495851635e-05, 'epoch': 1.25}\n", "{'loss': 0.5743, 'learning_rate': 3.2137628111273795e-05, 'epoch': 1.26}\n", "{'loss': 1.0687, 'learning_rate': 3.189360663738409e-05, 'epoch': 1.28}\n", "{'loss': 0.3615, 'learning_rate': 3.164958516349439e-05, 'epoch': 1.29}\n", "{'loss': 0.6288, 'learning_rate': 3.1405563689604686e-05, 'epoch': 1.3}\n", "{'loss': 0.3835, 'learning_rate': 3.116154221571498e-05, 'epoch': 1.32}\n", "{'loss': 0.9285, 'learning_rate': 3.091752074182529e-05, 'epoch': 1.33}\n", "{'loss': 0.2655, 'learning_rate': 3.067349926793558e-05, 'epoch': 1.34}\n", "{'loss': 1.0567, 'learning_rate': 3.042947779404588e-05, 'epoch': 1.36}\n", "{'loss': 0.5765, 'learning_rate': 3.0185456320156174e-05, 'epoch': 1.37}\n", "{'loss': 1.2574, 'learning_rate': 2.9941434846266475e-05, 'epoch': 1.38}\n", "{'loss': 0.9853, 'learning_rate': 2.969741337237677e-05, 'epoch': 1.4}\n", "{'loss': 1.0576, 'learning_rate': 2.9453391898487072e-05, 'epoch': 1.41}\n", "{'loss': 1.5532, 'learning_rate': 2.9209370424597365e-05, 'epoch': 1.42}\n", "{'loss': 0.7434, 'learning_rate': 2.8965348950707666e-05, 'epoch': 1.44}\n", "{'loss': 0.9242, 'learning_rate': 2.872132747681796e-05, 'epoch': 1.45}\n", "{'loss': 0.6304, 'learning_rate': 2.847730600292826e-05, 'epoch': 1.46}\n", "{'loss': 1.1426, 'learning_rate': 2.8233284529038557e-05, 'epoch': 1.48}\n", "{'loss': 0.586, 'learning_rate': 2.7989263055148857e-05, 'epoch': 1.49}\n", "{'loss': 0.1939, 'learning_rate': 2.774524158125915e-05, 'epoch': 1.5}\n", "{'loss': 0.7237, 'learning_rate': 2.750122010736945e-05, 'epoch': 1.52}\n", "{'loss': 0.692, 'learning_rate': 2.7257198633479748e-05, 'epoch': 1.53}\n", "{'loss': 1.0906, 'learning_rate': 2.7013177159590048e-05, 'epoch': 1.54}\n", "{'loss': 0.7017, 'learning_rate': 2.676915568570034e-05, 'epoch': 1.55}\n", "{'loss': 0.6127, 'learning_rate': 2.6525134211810642e-05, 'epoch': 1.57}\n", "{'loss': 0.2787, 'learning_rate': 2.628111273792094e-05, 'epoch': 1.58}\n", "{'loss': 0.3796, 'learning_rate': 2.603709126403124e-05, 'epoch': 1.59}\n", "{'loss': 1.0767, 'learning_rate': 2.5793069790141533e-05, 'epoch': 1.61}\n", "{'loss': 1.0914, 'learning_rate': 2.5549048316251833e-05, 'epoch': 1.62}\n", "{'loss': 0.7677, 'learning_rate': 2.530502684236213e-05, 'epoch': 1.63}\n", "{'loss': 0.7227, 'learning_rate': 2.506100536847243e-05, 'epoch': 1.65}\n", "{'loss': 1.294, 'learning_rate': 2.4816983894582724e-05, 'epoch': 1.66}\n", "{'loss': 0.8313, 'learning_rate': 2.457296242069302e-05, 'epoch': 1.67}\n", "{'loss': 0.8837, 'learning_rate': 2.4328940946803318e-05, 'epoch': 1.69}\n", "{'loss': 0.6301, 'learning_rate': 2.4084919472913618e-05, 'epoch': 1.7}\n", "{'loss': 0.313, 'learning_rate': 2.3840897999023915e-05, 'epoch': 1.71}\n", "{'loss': 0.485, 'learning_rate': 2.3596876525134212e-05, 'epoch': 1.73}\n", "{'loss': 0.8216, 'learning_rate': 2.335285505124451e-05, 'epoch': 1.74}\n", "{'loss': 0.5089, 'learning_rate': 2.310883357735481e-05, 'epoch': 1.75}\n", "{'loss': 0.9226, 'learning_rate': 2.2864812103465106e-05, 'epoch': 1.77}\n", "{'loss': 0.7497, 'learning_rate': 2.2620790629575403e-05, 'epoch': 1.78}\n", "{'loss': 0.477, 'learning_rate': 2.23767691556857e-05, 'epoch': 1.79}\n", "{'loss': 0.7631, 'learning_rate': 2.2132747681795997e-05, 'epoch': 1.81}\n", "{'loss': 0.4578, 'learning_rate': 2.1888726207906297e-05, 'epoch': 1.82}\n", "{'loss': 0.4837, 'learning_rate': 2.1644704734016594e-05, 'epoch': 1.83}\n", "{'loss': 1.0476, 'learning_rate': 2.140068326012689e-05, 'epoch': 1.84}\n", "{'loss': 0.5899, 'learning_rate': 2.1156661786237188e-05, 'epoch': 1.86}\n", "{'loss': 0.7881, 'learning_rate': 2.0912640312347485e-05, 'epoch': 1.87}\n", "{'loss': 0.8762, 'learning_rate': 2.0668618838457785e-05, 'epoch': 1.88}\n", "{'loss': 0.939, 'learning_rate': 2.0424597364568082e-05, 'epoch': 1.9}\n", "{'loss': 0.2438, 'learning_rate': 2.018057589067838e-05, 'epoch': 1.91}\n", "{'loss': 0.243, 'learning_rate': 1.9936554416788676e-05, 'epoch': 1.92}\n", "{'loss': 0.4295, 'learning_rate': 1.9692532942898977e-05, 'epoch': 1.94}\n", "{'loss': 0.329, 'learning_rate': 1.9448511469009274e-05, 'epoch': 1.95}\n", "{'loss': 0.9494, 'learning_rate': 1.920448999511957e-05, 'epoch': 1.96}\n", "{'loss': 0.5766, 'learning_rate': 1.8960468521229867e-05, 'epoch': 1.98}\n", "{'loss': 0.6316, 'learning_rate': 1.8716447047340164e-05, 'epoch': 1.99}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "***** Running Evaluation *****\n", " Num examples = 2700\n", " Batch size = 4\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3bb885c57897484db109ec18c2f32ba2", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/675 [00:00 IPU 0\n", "Encoder 0 --> IPU 0\n", "Encoder 1 --> IPU 0\n", "Encoder 2 --> IPU 0\n", "Encoder 3 --> IPU 1\n", "Encoder 4 --> IPU 1\n", "Encoder 5 --> IPU 1\n", "Encoder 6 --> IPU 2\n", "Encoder 7 --> IPU 2\n", "Encoder 8 --> IPU 2\n", "Encoder 9 --> IPU 3\n", "Encoder 10 --> IPU 3\n", "Encoder 11 --> IPU 3\n", "Head --> IPU 3\n", "---------------------------------------\n", "Configuration saved in dinov2-base-finetuned-eurosat/checkpoint-1518/ipu_config.json\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "{'loss': 1.1494, 'learning_rate': 1.8472425573450465e-05, 'epoch': 2.0}\n", "{'loss': 0.8247, 'learning_rate': 1.822840409956076e-05, 'epoch': 2.02}\n", "{'loss': 0.8524, 'learning_rate': 1.798438262567106e-05, 'epoch': 2.03}\n", "{'loss': 0.8647, 'learning_rate': 1.7740361151781356e-05, 'epoch': 2.04}\n", "{'loss': 0.6253, 'learning_rate': 1.7496339677891656e-05, 'epoch': 2.06}\n", "{'loss': 0.604, 'learning_rate': 1.7252318204001953e-05, 'epoch': 2.07}\n", "{'loss': 0.3203, 'learning_rate': 1.700829673011225e-05, 'epoch': 2.08}\n", "{'loss': 0.6472, 'learning_rate': 1.6764275256222547e-05, 'epoch': 2.09}\n", "{'loss': 0.5816, 'learning_rate': 1.6520253782332844e-05, 'epoch': 2.11}\n", "{'loss': 0.5896, 'learning_rate': 1.6276232308443144e-05, 'epoch': 2.12}\n", "{'loss': 0.5988, 'learning_rate': 1.603221083455344e-05, 'epoch': 2.13}\n", "{'loss': 0.4993, 'learning_rate': 1.5788189360663738e-05, 'epoch': 2.15}\n", "{'loss': 0.1719, 'learning_rate': 1.5544167886774035e-05, 'epoch': 2.16}\n", "{'loss': 0.6293, 'learning_rate': 1.5300146412884335e-05, 'epoch': 2.17}\n", "{'loss': 0.2624, 'learning_rate': 1.5056124938994632e-05, 'epoch': 2.19}\n", "{'loss': 0.555, 'learning_rate': 1.4812103465104929e-05, 'epoch': 2.2}\n", "{'loss': 0.2901, 'learning_rate': 1.4568081991215226e-05, 'epoch': 2.21}\n", "{'loss': 0.2919, 'learning_rate': 1.4324060517325525e-05, 'epoch': 2.23}\n", "{'loss': 0.5018, 'learning_rate': 1.4080039043435821e-05, 'epoch': 2.24}\n", "{'loss': 1.2391, 'learning_rate': 1.383601756954612e-05, 'epoch': 2.25}\n", "{'loss': 0.7941, 'learning_rate': 1.3591996095656417e-05, 'epoch': 2.27}\n", "{'loss': 0.546, 'learning_rate': 1.3347974621766716e-05, 'epoch': 2.28}\n", "{'loss': 0.7629, 'learning_rate': 1.3103953147877013e-05, 'epoch': 2.29}\n", "{'loss': 0.529, 'learning_rate': 1.2859931673987311e-05, 'epoch': 2.31}\n", "{'loss': 0.8514, 'learning_rate': 1.2615910200097608e-05, 'epoch': 2.32}\n", "{'loss': 0.5915, 'learning_rate': 1.2371888726207907e-05, 'epoch': 2.33}\n", "{'loss': 0.739, 'learning_rate': 1.2127867252318205e-05, 'epoch': 2.35}\n", "{'loss': 0.6139, 'learning_rate': 1.1883845778428502e-05, 'epoch': 2.36}\n", "{'loss': 0.369, 'learning_rate': 1.1639824304538801e-05, 'epoch': 2.37}\n", "{'loss': 0.8385, 'learning_rate': 1.1395802830649098e-05, 'epoch': 2.38}\n", "{'loss': 1.0982, 'learning_rate': 1.1151781356759395e-05, 'epoch': 2.4}\n", "{'loss': 0.881, 'learning_rate': 1.0907759882869694e-05, 'epoch': 2.41}\n", "{'loss': 0.825, 'learning_rate': 1.066373840897999e-05, 'epoch': 2.42}\n", "{'loss': 0.7957, 'learning_rate': 1.0419716935090289e-05, 'epoch': 2.44}\n", "{'loss': 0.7904, 'learning_rate': 1.0175695461200586e-05, 'epoch': 2.45}\n", "{'loss': 0.5884, 'learning_rate': 9.931673987310885e-06, 'epoch': 2.46}\n", "{'loss': 0.7961, 'learning_rate': 9.687652513421182e-06, 'epoch': 2.48}\n", "{'loss': 0.2957, 'learning_rate': 9.44363103953148e-06, 'epoch': 2.49}\n", "{'loss': 0.4575, 'learning_rate': 9.199609565641777e-06, 'epoch': 2.5}\n", "{'loss': 0.1038, 'learning_rate': 8.955588091752074e-06, 'epoch': 2.52}\n", "{'loss': 1.0916, 'learning_rate': 8.711566617862373e-06, 'epoch': 2.53}\n", "{'loss': 0.528, 'learning_rate': 8.46754514397267e-06, 'epoch': 2.54}\n", "{'loss': 0.2901, 'learning_rate': 8.223523670082968e-06, 'epoch': 2.56}\n", "{'loss': 0.2932, 'learning_rate': 7.979502196193265e-06, 'epoch': 2.57}\n", "{'loss': 0.1202, 'learning_rate': 7.735480722303564e-06, 'epoch': 2.58}\n", "{'loss': 0.7574, 'learning_rate': 7.491459248413861e-06, 'epoch': 2.6}\n", "{'loss': 0.2178, 'learning_rate': 7.247437774524159e-06, 'epoch': 2.61}\n", "{'loss': 0.4829, 'learning_rate': 7.0034163006344565e-06, 'epoch': 2.62}\n", "{'loss': 0.8247, 'learning_rate': 6.759394826744754e-06, 'epoch': 2.64}\n", "{'loss': 0.7494, 'learning_rate': 6.515373352855052e-06, 'epoch': 2.65}\n", "{'loss': 0.7487, 'learning_rate': 6.27135187896535e-06, 'epoch': 2.66}\n", "{'loss': 0.6028, 'learning_rate': 6.027330405075647e-06, 'epoch': 2.67}\n", "{'loss': 0.4126, 'learning_rate': 5.7833089311859446e-06, 'epoch': 2.69}\n", "{'loss': 0.6192, 'learning_rate': 5.539287457296242e-06, 'epoch': 2.7}\n", "{'loss': 0.5276, 'learning_rate': 5.29526598340654e-06, 'epoch': 2.71}\n", "{'loss': 0.2953, 'learning_rate': 5.051244509516838e-06, 'epoch': 2.73}\n", "{'loss': 0.6768, 'learning_rate': 4.807223035627136e-06, 'epoch': 2.74}\n", "{'loss': 0.5799, 'learning_rate': 4.5632015617374335e-06, 'epoch': 2.75}\n", "{'eval_loss': 0.475341796875, 'eval_accuracy': 0.832962962962963, 'eval_runtime': 36.6374, 'eval_samples_per_second': 73.695, 'eval_steps_per_second': 18.424, 'epoch': 3.0}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Saving model checkpoint to dinov2-base-finetuned-eurosat/checkpoint-2277\n", "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py:1432: UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details.\n", " warnings.warn(\n", "---------- Device Allocation -----------\n", "Embedding --> IPU 0\n", "Encoder 0 --> IPU 0\n", "Encoder 1 --> IPU 0\n", "Encoder 2 --> IPU 0\n", "Encoder 3 --> IPU 1\n", "Encoder 4 --> IPU 1\n", "Encoder 5 --> IPU 1\n", "Encoder 6 --> IPU 2\n", "Encoder 7 --> IPU 2\n", "Encoder 8 --> IPU 2\n", "Encoder 9 --> IPU 3\n", "Encoder 10 --> IPU 3\n", "Encoder 11 --> IPU 3\n", "Head --> IPU 3\n", "---------------------------------------\n", "Configuration saved in dinov2-base-finetuned-eurosat/checkpoint-2277/ipu_config.json\n", "\n", "\n", "Training completed. Do not forget to share your model on huggingface.co/models =)\n", "\n", "\n", "Loading best model from dinov2-base-finetuned-eurosat/checkpoint-2277 (score: 0.832962962962963).\n", "---------- Device Allocation -----------\n", "Embedding --> IPU 0\n", "Encoder 0 --> IPU 0\n", "Encoder 1 --> IPU 0\n", "Encoder 2 --> IPU 0\n", "Encoder 3 --> IPU 1\n", "Encoder 4 --> IPU 1\n", "Encoder 5 --> IPU 1\n", "Encoder 6 --> IPU 2\n", "Encoder 7 --> IPU 2\n", "Encoder 8 --> IPU 2\n", "Encoder 9 --> IPU 3\n", "Encoder 10 --> IPU 3\n", "Encoder 11 --> IPU 3\n", "Head --> IPU 3\n", "---------------------------------------\n", "Saving model checkpoint to dinov2-base-finetuned-eurosat\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "{'train_runtime': 1546.0618, 'train_samples_per_second': 47.129, 'train_steps_per_second': 1.473, 'train_loss': 0.8919858627273265, 'epoch': 3.0}\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py:1432: UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details.\n", " warnings.warn(\n", "---------- Device Allocation -----------\n", "Embedding --> IPU 0\n", "Encoder 0 --> IPU 0\n", "Encoder 1 --> IPU 0\n", "Encoder 2 --> IPU 0\n", "Encoder 3 --> IPU 1\n", "Encoder 4 --> IPU 1\n", "Encoder 5 --> IPU 1\n", "Encoder 6 --> IPU 2\n", "Encoder 7 --> IPU 2\n", "Encoder 8 --> IPU 2\n", "Encoder 9 --> IPU 3\n", "Encoder 10 --> IPU 3\n", "Encoder 11 --> IPU 3\n", "Head --> IPU 3\n", "---------------------------------------\n", "Configuration saved in dinov2-base-finetuned-eurosat/ipu_config.json\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "***** train metrics *****\n", " epoch = 3.0\n", " train_loss = 0.892\n", " train_runtime = 0:25:46.06\n", " train_samples_per_second = 47.129\n", " train_steps_per_second = 1.473\n" ] } ], "source": [ "train_results = trainer.train()\n", "# rest is optional but nice to have\n", "trainer.save_model()\n", "trainer.log_metrics(\"train\", train_results.metrics)\n", "trainer.save_metrics(\"train\", train_results.metrics)\n", "trainer.save_state()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 215 }, "execution": { "iopub.execute_input": "2023-06-21T23:33:04.848077Z", "iopub.status.busy": "2023-06-21T23:33:04.847894Z", "iopub.status.idle": "2023-06-21T23:33:52.707084Z" }, "id": "niniUAnb5IrR", "outputId": "1adeaf58-d2a9-41f1-d0fe-4db079f48aa0" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "***** Running Evaluation *****\n", " Num examples = 2700\n", " Batch size = 4\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e9c8da84a7684b9285c64edd7837b6d0", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/675 [00:00" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from PIL import Image\n", "import requests\n", "\n", "url = 'https://huggingface.co./nielsr/convnext-tiny-finetuned-eurostat/resolve/main/forest.png'\n", "image = Image.open(requests.get(url, stream=True).raw)\n", "image" ] }, { "cell_type": "markdown", "metadata": { "id": "91-Ibh1--oI3" }, "source": [ "We'll load the feature extractor and model from the hub (here, we use the [Auto Classes](https://huggingface.co./docs/transformers/model_doc/auto#transformers.AutoModelForImageClassification), which will make sure the appropriate classes will be loaded automatically based on the `config.json` and `preprocessor_config.json` files of the repo on the hub). Simply put your Hugging Face user or organization name into the string below to load your fine-tuned model:" ] }, { "cell_type": "code", "execution_count": 84, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000, "referenced_widgets": [ "1d7d48efc83942f7af9d6ee079829cf5", "9e0aef46a23d438dbfe0d38f96594627", "ae76aad40bf14fb59f600e67626dcd2a", "0ddaf04b08de467db0d05d1310a061b9", "9dfc08df9d3c40e2b58b80ded1757877", "439e99396ea94ded839bd248fedd4336", "9e99ded657134f558d258ab848ec7ed9", "970bfe0340214232a20166834b5467a8", "6b461c460eb543ef8a095b685163a135", "d11b8b3db3584d289194e55b21e349cd", "dbf1ac358f1c42f2a3d4ea06855e6f8c", "2f352e7c41354fad8ff728812e57d710", "ae47ecc705504c8b970eed5631c3ba70", "57c389d6ab5b43c2aff368a2ec0eec9d", "d58f48db2d1a45f68089517e1d3d03fb", "ecb63e66b3f64471af20595c3b55bc09", "43c38e2605e64d94b84f38d6ca4e284f", "4975c51eb23049389da9f1ff892c1906", "73b4904f115a45e68370570fe6029158", "1221b9be3dff4f168d04b297d37f59ff", "9dc83601a17f4fb2a2d3bf68f41612e6", "f49d1a2f1f4744b9aa348f9ad216a1c9", "d3ce10fbf95c4ebfb4e735e3f3538c3c", "729118d4d197413f91e59000ca0fad5b", "19aaee92700f4f3ab16d9a84f58c9662", "c90b1c5c9de4463ab7e07ed2b31aa15c", "8950022cf2be41cfa0fe71cf49d9da99", "7b904e63e1e64d81a038151aa0255fe9", "72ae4253f07c4f74a8f78456624451e9", "af7e3f72f5fe49aa8a9228c3ab9535ab", "0bb996ac5dc54a65b9c93c090dd236c5", "579bc0c4df494b68b0a9dd37c9b5faf4", "8c254fe1a46740e49a6bffc3cbe0713a" ] }, "execution": { "iopub.execute_input": "2023-06-21T23:40:10.533259Z", "iopub.status.busy": "2023-06-21T23:40:10.532975Z", "iopub.status.idle": "2023-06-21T23:40:14.465823Z", "shell.execute_reply": "2023-06-21T23:40:14.465134Z", "shell.execute_reply.started": "2023-06-21T23:40:10.533237Z" }, "id": "xzwvix8X-st3", "outputId": "fbfda8b3-0394-4dd9-e96f-5dd886775b69" }, "outputs": [], "source": [ "from transformers import AutoModelForImageClassification, AutoFeatureExtractor\n", "\n", "repo_name = f\"internetoftim/dinov2-base-eurosat\"\n", "\n", "try:\n", " # if the model was pushed to the hub it can be downloaded\n", " feature_extractor = AutoFeatureExtractor.from_pretrained(repo_name)\n", " model = AutoModelForImageClassification.from_pretrained(repo_name)\n", "except:\n", " # otherwise we use the local folder where the model was saved after training\n", " feature_extractor = AutoFeatureExtractor.from_pretrained(trainer.args.output_dir)\n", " model = AutoModelForImageClassification.from_pretrained(trainer.args.output_dir)" ] }, { "cell_type": "code", "execution_count": 85, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "execution": { "iopub.execute_input": "2023-06-21T23:40:14.467694Z", "iopub.status.busy": "2023-06-21T23:40:14.467475Z", "iopub.status.idle": "2023-06-21T23:40:14.494018Z", "shell.execute_reply": "2023-06-21T23:40:14.493099Z", "shell.execute_reply.started": "2023-06-21T23:40:14.467672Z" }, "id": "298o50gr-Rwt", "outputId": "b5f46085-b7c8-4f6b-970e-69a6ad5a9b2d" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "torch.Size([1, 3, 518, 518])\n" ] } ], "source": [ "# prepare image for the model\n", "encoding = feature_extractor(image.convert(\"RGB\"), return_tensors=\"pt\")\n", "print(encoding.pixel_values.shape)" ] }, { "cell_type": "code", "execution_count": 86, "metadata": { "execution": { "iopub.execute_input": "2023-06-21T23:40:14.495876Z", "iopub.status.busy": "2023-06-21T23:40:14.495648Z", "iopub.status.idle": "2023-06-21T23:40:15.463238Z", "shell.execute_reply": "2023-06-21T23:40:15.462572Z", "shell.execute_reply.started": "2023-06-21T23:40:14.495854Z" }, "id": "33E44G86_RtL" }, "outputs": [], "source": [ "import torch\n", "\n", "# forward pass\n", "with torch.no_grad():\n", " outputs = model(**encoding)\n", " logits = outputs.logits" ] }, { "cell_type": "code", "execution_count": 87, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "execution": { "iopub.execute_input": "2023-06-21T23:40:15.464465Z", "iopub.status.busy": "2023-06-21T23:40:15.464153Z", "iopub.status.idle": "2023-06-21T23:40:15.468310Z", "shell.execute_reply": "2023-06-21T23:40:15.467823Z", "shell.execute_reply.started": "2023-06-21T23:40:15.464443Z" }, "id": "4ctUvqfs_Yyn", "outputId": "74540ee4-c1af-4147-f221-15e213b5a7e8" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Predicted class: Forest\n" ] } ], "source": [ "predicted_class_idx = logits.argmax(-1).item()\n", "print(\"Predicted class:\", model.config.id2label[predicted_class_idx])" ] }, { "cell_type": "markdown", "metadata": { "id": "N3yJFIIP_k01" }, "source": [ "Looks like our model got it correct! " ] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [], "name": "image_classification.ipynb", "provenance": [] }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" }, "vscode": { "interpreter": { "hash": "9409b80169a82c0207afe9a460d7f88a38094a708839df55a31910312ecdb1ee" } }, "widgets": { "application/vnd.jupyter.widget-state+json": { "01c63ad383b44a238cb7d931bdbc426e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0789ac7948dc47af88cbd4306376fa2a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "07a8dfd811d54c1eaaf8d30df4a15e02": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4cbb9fa91c7b480e8152248e339da888", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_4122b532a6674fdebc76dbf4bf064e4d", "value": 1 } }, "07aba02933d5483c9db8d523957c26da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "0bb996ac5dc54a65b9c93c090dd236c5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "0ddaf04b08de467db0d05d1310a061b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d11b8b3db3584d289194e55b21e349cd", "placeholder": "​", "style": "IPY_MODEL_dbf1ac358f1c42f2a3d4ea06855e6f8c", "value": " 240/240 [00:00<00:00, 4.55kB/s]" } }, "0e2c6500a66e42b19df8306e84229b14": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "0eed61f5a8244ad0b7b02fdf2f0bc445": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0ef55f103c7049ffb072be07cbdc3c55": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0eed61f5a8244ad0b7b02fdf2f0bc445", "placeholder": "​", "style": "IPY_MODEL_07aba02933d5483c9db8d523957c26da", "value": "Generating train split: " } }, "0f5ce894e0ee47c6af02f709256ac641": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "111d49a2cbd142b79d50252805c79285": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "121d965ef7fb4d2fa4a5ccd17cbde89e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_55c3d0b36f004800976e85d830f81743", "IPY_MODEL_ac029057d6534c9191fe3f1fddbd64fe", "IPY_MODEL_32c8f368ff21452fb711fdce75f99a5a" ], "layout": "IPY_MODEL_45649d5553544d479c5312c8a46637fb" } }, "1221b9be3dff4f168d04b297d37f59ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "150f5046c3224c0d9eff3f8c851b146f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "153ac1ceef154fb1a7d080fb4b00ca67": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "16ffe85c44764fa9ad8a31fb21e6432f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "18f7dc9f5e6241138534b7cf9aa30adb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b447ca05136342d0a167bfb133a353bd", "placeholder": "​", "style": "IPY_MODEL_4dcbcf9b086f452d9d1bc07b4a4cc1d3", "value": "\nPro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks.
Logging in with your username and password is deprecated and\nwon't be possible anymore in the near future. You can still use them for now by\nclicking below.
" } }, "19aaee92700f4f3ab16d9a84f58c9662": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_af7e3f72f5fe49aa8a9228c3ab9535ab", "max": 110417455, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_0bb996ac5dc54a65b9c93c090dd236c5", "value": 110417455 } }, "19e065315da84ab0bcfe771280b7cefc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "1a13206aae6346cfb744f0edca13dfae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "1ae00749a1db45f3a9df07d54ba7b9a2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1d7d48efc83942f7af9d6ee079829cf5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_9e0aef46a23d438dbfe0d38f96594627", "IPY_MODEL_ae76aad40bf14fb59f600e67626dcd2a", "IPY_MODEL_0ddaf04b08de467db0d05d1310a061b9" ], "layout": "IPY_MODEL_9dfc08df9d3c40e2b58b80ded1757877" } }, "1de73b85fab34677b26258cf81b1f12f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1ec40e8e33474dcb85bbf394eefc1b56": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "1ed8401e795b4efda2d6ce57b72aeafb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "1f66f9bb6f374902ac87747b55fdede6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_dfe11154745547058a1158a2e8c7d620", "max": 110417455, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_950d18b052794bdd85e9981dba17d253", "value": 110417455 } }, "20648d3f57564cf2a30fab10b12af123": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "21aa0de2c357460c926cd51ef2706ab1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_29c5dda2d3464ab0b6e3f5667dab9185", "placeholder": "​", "style": "IPY_MODEL_d8fbaac013d24e0b9be1d0969bede5c1", "value": "Downloading: 100%" } }, "2953a9b8d7224f249d8fbe6b1eea0043": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "29c5dda2d3464ab0b6e3f5667dab9185": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2c017c8365c7417f80040637f0576456": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_bad41d5acc1741e0a3954363802efb95", "IPY_MODEL_d497d019f02048ed8d8996a7dc024086", "IPY_MODEL_cf7f56acd6a84ab0bbd669ffc68049f1" ], "layout": "IPY_MODEL_711229887a3c44308d99a36b0cfe383c" } }, "2cd78732f3114043aab3b2c3b4216a18": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_45b2401d4c2042eeaa566aecaab3bd8f", "placeholder": "​", "style": "IPY_MODEL_a688efdb9d114f4c91cac8a70f7322b0", "value": "Downloading: 100%" } }, "2daba079b8ab4a6bb5c9d4e975954913": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "2e436c1f1346463fbb4bd4365b91ebb8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "20px" } }, "2f352e7c41354fad8ff728812e57d710": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_ae47ecc705504c8b970eed5631c3ba70", "IPY_MODEL_57c389d6ab5b43c2aff368a2ec0eec9d", "IPY_MODEL_d58f48db2d1a45f68089517e1d3d03fb" ], "layout": "IPY_MODEL_ecb63e66b3f64471af20595c3b55bc09" } }, "2ff8584bc3ba4faa8dd305b4aa4e1023": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "32c8f368ff21452fb711fdce75f99a5a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e770a085eccb42ffa19ccef7c2595baf", "placeholder": "​", "style": "IPY_MODEL_7a23e83ece094f5b98e6cd715c78bff8", "value": " 3.19k/? [00:00<00:00, 88.7kB/s]" } }, "337cdba2a3a542229a2bfaa42cc9dbe4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "33ff92cb74cd45a0b04744e6a0aaa202": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "3423d126316b4895b8350cad294e9ed5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "344c041a34b5458eb1bbb3ea8fa5b315": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ButtonModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ButtonModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ButtonView", "button_style": "", "description": "Login", "disabled": false, "icon": "", "layout": "IPY_MODEL_e9bad1a707f0442da6f117fdd2804f72", "style": "IPY_MODEL_a0bac01e342b4793b66d7d4f5bfac2e2", "tooltip": "" } }, "35274b3dd11c4d7ebe7912d04b706ebe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a721cfb1ad374676b542167485d7f462", "max": 113476015, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_d7c49b2687b647a882348bd671ac8045", "value": 113476015 } }, "36cb688ec8c048b9b67feeb978d1ae7e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_41556a6c7cf545ac9355482538ac814a", "max": 255, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_7ce25ef57ec94306a781b46074f137fe", "value": 255 } }, "398c087633254bcaaf781aa57e982dd6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_f200c07beda8456a92e897ee00b5fde5", "IPY_MODEL_1f66f9bb6f374902ac87747b55fdede6", "IPY_MODEL_fb8b8971f3714b16ac699a0bb9435dae" ], "layout": "IPY_MODEL_b14bfd13a6294a9cb6f8226d43b2ba3d" } }, "40db3808e98d424cacc5d0fed54b9eaa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "4122b532a6674fdebc76dbf4bf064e4d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "41556a6c7cf545ac9355482538ac814a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "439e99396ea94ded839bd248fedd4336": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "43c38e2605e64d94b84f38d6ca4e284f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "45649d5553544d479c5312c8a46637fb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "45b2401d4c2042eeaa566aecaab3bd8f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4975c51eb23049389da9f1ff892c1906": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "4aed4abfe24d492ab793be6a5742c01e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4cbb9fa91c7b480e8152248e339da888": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4dbffab93ea2497fa5e7d4a710230034": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_2cd78732f3114043aab3b2c3b4216a18", "IPY_MODEL_de3ae0562d2344dd9e2055015e160a2c", "IPY_MODEL_d74498ae614e412bbb47f33a830be7ba" ], "layout": "IPY_MODEL_cdd3559a361e469bb26501c272e563ba" } }, "4dcbcf9b086f452d9d1bc07b4a4cc1d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "51b8c526e3594d3cac19c923160d082c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_536f6919a19d435e9f19055eacdf143e", "placeholder": "​", "style": "IPY_MODEL_111d49a2cbd142b79d50252805c79285", "value": " 13.9k/13.9k [03:00<00:00, 59.8B/s]" } }, "536f6919a19d435e9f19055eacdf143e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5466f882ca23480ab8d25a93d938c650": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_76bc21ca1ac541a29751df47a6b66eb6", "placeholder": "​", "style": "IPY_MODEL_c48f86ba50054f70922cb6b86fc041c0", "value": " 1/1 [00:00<00:00, 23.98it/s]" } }, "55c3d0b36f004800976e85d830f81743": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d1c68503e1bd4802b5077a14225909e4", "placeholder": "​", "style": "IPY_MODEL_19e065315da84ab0bcfe771280b7cefc", "value": "Downloading builder script: " } }, "56ec636f14e749e1abc2d910c4ee08d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "579bc0c4df494b68b0a9dd37c9b5faf4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "57c389d6ab5b43c2aff368a2ec0eec9d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_73b4904f115a45e68370570fe6029158", "max": 1265, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_1221b9be3dff4f168d04b297d37f59ff", "value": 1265 } }, "5830dd2340a64f1a874332b0b1e32ec7": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5ad22e5e6c7c464c8ac943b9730954a1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "5ca400da4dc0421288dc4788f0dde96c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5d2d1f1d210449b895820a81089f6c0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_db5bdd6de3e74610b61b044c23700daa", "placeholder": "​", "style": "IPY_MODEL_eec1d3b8ea07492d9a4fb06bce7404d2", "value": "Downloading data files: " } }, "6126aa9e8dd343aa9233ac1f2150121b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d089ec92b52b4b90b7ade4a2b6d7ced4", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_706b3ef455424cd5b0f2629d58b5aaa6", "value": 0 } }, "6146998af3154b7d9317375018b0b35c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "62f3666095fd4f299875d99365fc6d3e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "65ee9c937e37404593bbd78489040d82": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_5d2d1f1d210449b895820a81089f6c0b", "IPY_MODEL_6126aa9e8dd343aa9233ac1f2150121b", "IPY_MODEL_c096392e55374751b33105be96d37934" ], "layout": "IPY_MODEL_aba0dcd1eef34146a52c90eb5c3e211c" } }, "6b461c460eb543ef8a095b685163a135": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "6be6e59a99cc4a7a9519f56274eab245": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1ae00749a1db45f3a9df07d54ba7b9a2", "placeholder": "​", "style": "IPY_MODEL_e3f9fa06f3254786babef77b69edf5e1", "value": "Extracting data files: 100%" } }, "6ca86c47e547426e8a0d4487a786c46c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ButtonStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ButtonStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "button_color": null, "font_weight": "" } }, "6da1bfe89c754d74868af73bff068ebb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "706b3ef455424cd5b0f2629d58b5aaa6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "711229887a3c44308d99a36b0cfe383c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "724b578bac3f4b7cb6806ee3c45aff01": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "729118d4d197413f91e59000ca0fad5b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7b904e63e1e64d81a038151aa0255fe9", "placeholder": "​", "style": "IPY_MODEL_72ae4253f07c4f74a8f78456624451e9", "value": "Downloading: 100%" } }, "72ae4253f07c4f74a8f78456624451e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "730378e114f944908aa06f42bb2faa3d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7344011c60a44af49dfb435e217ba205": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_a9a3933138f04b628d9ec9e0a1b3531b", "IPY_MODEL_07a8dfd811d54c1eaaf8d30df4a15e02", "IPY_MODEL_ac6e0d722fbf4cb98e1beae1d768461d" ], "layout": "IPY_MODEL_73be6beffebe4986b26fd275a549983a" } }, "73b4904f115a45e68370570fe6029158": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "73be6beffebe4986b26fd275a549983a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "75099c97172c41b2ab9ce93fb8648f3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "76bc21ca1ac541a29751df47a6b66eb6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "76fde2f98f774466bb826c5cc3f90657": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_01c63ad383b44a238cb7d931bdbc426e", "placeholder": "​", "style": "IPY_MODEL_0e2c6500a66e42b19df8306e84229b14", "value": " 108M/108M [00:03<00:00, 38.0MB/s]" } }, "78de59096c0c4f4088248d49d8e945c7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_0ef55f103c7049ffb072be07cbdc3c55", "IPY_MODEL_d3cc200a473f4d05b003159452dc4694", "IPY_MODEL_f558d858617649a683a8249dd93cfb15" ], "layout": "IPY_MODEL_ec72f31db8fd4c209f081e20d43d9f01" } }, "7a23e83ece094f5b98e6cd715c78bff8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "7b904e63e1e64d81a038151aa0255fe9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7ce25ef57ec94306a781b46074f137fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "7d91643c73094ab990f7fadeded7ce32": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "822db9328a764186b4c71dc3a0788025": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "84731a7392f34547a8702ce8dae4ffde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0789ac7948dc47af88cbd4306376fa2a", "placeholder": "​", "style": "IPY_MODEL_33ff92cb74cd45a0b04744e6a0aaa202", "value": " 1/1 [00:05<00:00, 5.89s/it]" } }, "85aa3489e82442d38d387e9a1df8d920": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9d3a80f84461463da2d7135da04d0b8d", "max": 14241, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_dd7bebb0ca9c473aab467b9c22105bf8", "value": 14241 } }, "8950022cf2be41cfa0fe71cf49d9da99": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "898560cd6bca49d7bbc530070737e348": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_cb6c133b4a524edd98b35f43d4feef0e", "IPY_MODEL_85aa3489e82442d38d387e9a1df8d920", "IPY_MODEL_51b8c526e3594d3cac19c923160d082c" ], "layout": "IPY_MODEL_0f5ce894e0ee47c6af02f709256ac641" } }, "89c3832e2105480bbc80c97683f8a9c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4aed4abfe24d492ab793be6a5742c01e", "placeholder": "​", "style": "IPY_MODEL_1ed8401e795b4efda2d6ce57b72aeafb", "value": "100%" } }, "8a3c971f5628488c83a8cc3685f39e6b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "8c254fe1a46740e49a6bffc3cbe0713a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "8da2a3d279654ff68534ac1ec0e4c94c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "950d18b052794bdd85e9981dba17d253": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "970bfe0340214232a20166834b5467a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "97d07155fabd42e580e130b4f1b50bff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "9824e85405d64dbd8d1c28466cbd5ce2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "98fd9150cbf045ac9443dcabe99ca22e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_dcb84839bd7f473a81d382e1fa0d69c8", "placeholder": "​", "style": "IPY_MODEL_b13db65ff9d04f6d95eb5761d1df9c78", "value": "Upload file runs/Apr12_08-48-13_9520b574893c/events.out.tfevents.1649754586.9520b574893c.77.2: 100%" } }, "9a6de936af954c528cad23494762d985": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9a6e68f68baf4d41ae4668f119e1d461": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "9bb0bb71bd3c4218be04f6e0dba884ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_150f5046c3224c0d9eff3f8c851b146f", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_8a3c971f5628488c83a8cc3685f39e6b", "value": 1 } }, "9d3a80f84461463da2d7135da04d0b8d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9dc83601a17f4fb2a2d3bf68f41612e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9dfc08df9d3c40e2b58b80ded1757877": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9e0aef46a23d438dbfe0d38f96594627": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_439e99396ea94ded839bd248fedd4336", "placeholder": "​", "style": "IPY_MODEL_9e99ded657134f558d258ab848ec7ed9", "value": "Downloading: 100%" } }, "9e99ded657134f558d258ab848ec7ed9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "a0bac01e342b4793b66d7d4f5bfac2e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ButtonStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ButtonStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "button_color": null, "font_weight": "" } }, "a18df3c4ad3d436ca9bb05e7e3700142": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "a4cdb122648b434fbc97a70c8ecd2797": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a688efdb9d114f4c91cac8a70f7322b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "a6d024d44a6c49eebef7966ef5a836f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "PasswordModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "PasswordModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "PasswordView", "continuous_update": true, "description": "Token:", "description_tooltip": null, "disabled": false, "layout": "IPY_MODEL_16ffe85c44764fa9ad8a31fb21e6432f", "placeholder": "​", "style": "IPY_MODEL_40db3808e98d424cacc5d0fed54b9eaa", "value": "" } }, "a721cfb1ad374676b542167485d7f462": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a722d5be4ebc42a38ed208047773c3ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_20648d3f57564cf2a30fab10b12af123", "placeholder": "​", "style": "IPY_MODEL_aec38c4c448d4b8083232bb50351a188", "value": " 363/363 [00:01<?, ?B/s]" } }, "a98957fcd9204fdc83a14bb710da2fd8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a99c93dcd98943aa9af6d6ae9cacb342": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d70e71438f0945319eec5f2eedf804e5", "placeholder": "​", "style": "IPY_MODEL_1a13206aae6346cfb744f0edca13dfae", "value": "Downloading: 100%" } }, "a9a3933138f04b628d9ec9e0a1b3531b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9824e85405d64dbd8d1c28466cbd5ce2", "placeholder": "​", "style": "IPY_MODEL_a18df3c4ad3d436ca9bb05e7e3700142", "value": "Downloading data files: 100%" } }, "aba0dcd1eef34146a52c90eb5c3e211c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ac029057d6534c9191fe3f1fddbd64fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_75099c97172c41b2ab9ce93fb8648f3a", "max": 1411, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_7d91643c73094ab990f7fadeded7ce32", "value": 1411 } }, "ac6e0d722fbf4cb98e1beae1d768461d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e046e82af8894041bf83190eda1fdd27", "placeholder": "​", "style": "IPY_MODEL_2953a9b8d7224f249d8fbe6b1eea0043", "value": " 1/1 [00:09<00:00, 9.05s/it]" } }, "ae47ecc705504c8b970eed5631c3ba70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_43c38e2605e64d94b84f38d6ca4e284f", "placeholder": "​", "style": "IPY_MODEL_4975c51eb23049389da9f1ff892c1906", "value": "Downloading: 100%" } }, "ae76aad40bf14fb59f600e67626dcd2a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_970bfe0340214232a20166834b5467a8", "max": 240, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_6b461c460eb543ef8a095b685163a135", "value": 240 } }, "aec38c4c448d4b8083232bb50351a188": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "af7e3f72f5fe49aa8a9228c3ab9535ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b13db65ff9d04f6d95eb5761d1df9c78": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "b14bfd13a6294a9cb6f8226d43b2ba3d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b1f48ef2e4774d3991109a3537ce6f95": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b274626ba7bb4917843c2505e2e642d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b447ca05136342d0a167bfb133a353bd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b47ec013328e427e91d645219ee0b4f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "b5e61543921d41c1a0fd0bdd32042c30": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_6be6e59a99cc4a7a9519f56274eab245", "IPY_MODEL_c31e69612cc949569d72927dc8556167", "IPY_MODEL_84731a7392f34547a8702ce8dae4ffde" ], "layout": "IPY_MODEL_a4cdb122648b434fbc97a70c8ecd2797" } }, "bad41d5acc1741e0a3954363802efb95": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9a6de936af954c528cad23494762d985", "placeholder": "​", "style": "IPY_MODEL_6146998af3154b7d9317375018b0b35c", "value": "Downloading data: 100%" } }, "bcd45d9e90d14473a743ce1e41968560": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bdbc14917682409886e9e1571dd525e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_98fd9150cbf045ac9443dcabe99ca22e", "IPY_MODEL_dc22cc2ba2a94f56b56672c6ce19041d", "IPY_MODEL_a722d5be4ebc42a38ed208047773c3ac" ], "layout": "IPY_MODEL_bcd45d9e90d14473a743ce1e41968560" } }, "c096392e55374751b33105be96d37934": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b274626ba7bb4917843c2505e2e642d8", "placeholder": "​", "style": "IPY_MODEL_c869a350dd09430cb3599a1b764abf7c", "value": " 0/0 [00:00<?, ?it/s]" } }, "c31e69612cc949569d72927dc8556167": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c9578be641994795aebba19c76e18c7c", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_dbc2646034c14ff798611f6a43ecfcb5", "value": 1 } }, "c48f86ba50054f70922cb6b86fc041c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "c869a350dd09430cb3599a1b764abf7c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "c90b1c5c9de4463ab7e07ed2b31aa15c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_579bc0c4df494b68b0a9dd37c9b5faf4", "placeholder": "​", "style": "IPY_MODEL_8c254fe1a46740e49a6bffc3cbe0713a", "value": " 105M/105M [00:04<00:00, 11.7MB/s]" } }, "c94af069c1674edf9b372c350d9b9c51": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "c9578be641994795aebba19c76e18c7c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "cb6c133b4a524edd98b35f43d4feef0e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_56ec636f14e749e1abc2d910c4ee08d7", "placeholder": "​", "style": "IPY_MODEL_97d07155fabd42e580e130b4f1b50bff", "value": "Upload file runs/Apr12_08-48-13_9520b574893c/events.out.tfevents.1649753401.9520b574893c.77.0: 100%" } }, "cdd3559a361e469bb26501c272e563ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "cf7f56acd6a84ab0bbd669ffc68049f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b1f48ef2e4774d3991109a3537ce6f95", "placeholder": "​", "style": "IPY_MODEL_2daba079b8ab4a6bb5c9d4e975954913", "value": " 94.3M/94.3M [00:08<00:00, 13.8MB/s]" } }, "d089ec92b52b4b90b7ade4a2b6d7ced4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "20px" } }, "d11b8b3db3584d289194e55b21e349cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d1c68503e1bd4802b5077a14225909e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d3cc200a473f4d05b003159452dc4694": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "info", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2e436c1f1346463fbb4bd4365b91ebb8", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_337cdba2a3a542229a2bfaa42cc9dbe4", "value": 1 } }, "d3ce10fbf95c4ebfb4e735e3f3538c3c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_729118d4d197413f91e59000ca0fad5b", "IPY_MODEL_19aaee92700f4f3ab16d9a84f58c9662", "IPY_MODEL_c90b1c5c9de4463ab7e07ed2b31aa15c" ], "layout": "IPY_MODEL_8950022cf2be41cfa0fe71cf49d9da99" } }, "d497d019f02048ed8d8996a7dc024086": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3423d126316b4895b8350cad294e9ed5", "max": 94280567, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_b47ec013328e427e91d645219ee0b4f3", "value": 94280567 } }, "d58f48db2d1a45f68089517e1d3d03fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9dc83601a17f4fb2a2d3bf68f41612e6", "placeholder": "​", "style": "IPY_MODEL_f49d1a2f1f4744b9aa348f9ad216a1c9", "value": " 1.24k/1.24k [00:00<00:00, 39.6kB/s]" } }, "d5e3a1de2a4645639c029a404d04dc1c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ButtonModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ButtonModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ButtonView", "button_style": "", "description": "Use password", "disabled": false, "icon": "", "layout": "IPY_MODEL_724b578bac3f4b7cb6806ee3c45aff01", "style": "IPY_MODEL_6ca86c47e547426e8a0d4487a786c46c", "tooltip": "" } }, "d70e71438f0945319eec5f2eedf804e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d74498ae614e412bbb47f33a830be7ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e1f9aa53a0d4470a98206fb0322730b3", "placeholder": "​", "style": "IPY_MODEL_c94af069c1674edf9b372c350d9b9c51", "value": " 70.1k/70.1k [00:00<00:00, 340kB/s]" } }, "d7c49b2687b647a882348bd671ac8045": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "d8fbaac013d24e0b9be1d0969bede5c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "db5bdd6de3e74610b61b044c23700daa": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "db6d4fa6175348ba9cb7e12d755c1b70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_822db9328a764186b4c71dc3a0788025", "placeholder": "​", "style": "IPY_MODEL_2ff8584bc3ba4faa8dd305b4aa4e1023", "value": " 255/255 [00:00<00:00, 6.75kB/s]" } }, "dbc2646034c14ff798611f6a43ecfcb5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "dbf1ac358f1c42f2a3d4ea06855e6f8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "dc22cc2ba2a94f56b56672c6ce19041d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5ca400da4dc0421288dc4788f0dde96c", "max": 363, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_9a6e68f68baf4d41ae4668f119e1d461", "value": 363 } }, "dcb84839bd7f473a81d382e1fa0d69c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "dd7bebb0ca9c473aab467b9c22105bf8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "de3ae0562d2344dd9e2055015e160a2c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5830dd2340a64f1a874332b0b1e32ec7", "max": 71813, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_1ec40e8e33474dcb85bbf394eefc1b56", "value": 71813 } }, "dfe11154745547058a1158a2e8c7d620": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e046e82af8894041bf83190eda1fdd27": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e1f9aa53a0d4470a98206fb0322730b3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e276e653c187474dba7e1c4fede10b79": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_730378e114f944908aa06f42bb2faa3d", "placeholder": "​", "style": "IPY_MODEL_f73b5464140d4723b1b3f46796d9b1ca", "value": "

Copy a token from your Hugging Face\ntokens page and paste it below.
Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file.
" } }, "e3f9fa06f3254786babef77b69edf5e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "e770a085eccb42ffa19ccef7c2595baf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e7e938eb6baf486e829ea5d4734087cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": "center", "align_self": null, "border": null, "bottom": null, "display": "flex", "flex": null, "flex_flow": "column", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "50%" } }, "e9bad1a707f0442da6f117fdd2804f72": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "eaa2e37efec944549715e9f5f12527b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ec72f31db8fd4c209f081e20d43d9f01": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ecb63e66b3f64471af20595c3b55bc09": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "edc7e95a57304afa9fb626e23e334e7b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "eec1d3b8ea07492d9a4fb06bce7404d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "f1760b8ccf9b4c32977a1e83f3a3af3d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_e276e653c187474dba7e1c4fede10b79", "IPY_MODEL_a6d024d44a6c49eebef7966ef5a836f1", "IPY_MODEL_344c041a34b5458eb1bbb3ea8fa5b315", "IPY_MODEL_18f7dc9f5e6241138534b7cf9aa30adb", "IPY_MODEL_d5e3a1de2a4645639c029a404d04dc1c" ], "layout": "IPY_MODEL_e7e938eb6baf486e829ea5d4734087cf" } }, "f200c07beda8456a92e897ee00b5fde5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1de73b85fab34677b26258cf81b1f12f", "placeholder": "​", "style": "IPY_MODEL_5ad22e5e6c7c464c8ac943b9730954a1", "value": "Upload file pytorch_model.bin: 100%" } }, "f49d1a2f1f4744b9aa348f9ad216a1c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "f558d858617649a683a8249dd93cfb15": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8da2a3d279654ff68534ac1ec0e4c94c", "placeholder": "​", "style": "IPY_MODEL_62f3666095fd4f299875d99365fc6d3e", "value": " 25131/0 [00:01<00:00, 21668.81 examples/s]" } }, "f73b5464140d4723b1b3f46796d9b1ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "f8204cbc9e33434e8dae692826092def": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_89c3832e2105480bbc80c97683f8a9c6", "IPY_MODEL_9bb0bb71bd3c4218be04f6e0dba884ab", "IPY_MODEL_5466f882ca23480ab8d25a93d938c650" ], "layout": "IPY_MODEL_eaa2e37efec944549715e9f5f12527b0" } }, "fb8b8971f3714b16ac699a0bb9435dae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a98957fcd9204fdc83a14bb710da2fd8", "placeholder": "​", "style": "IPY_MODEL_6da1bfe89c754d74868af73bff068ebb", "value": " 105M/105M [03:00<00:00, 732kB/s]" } }, "fe0a9c76f4de441d9bd8de7394ffbcda": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_21aa0de2c357460c926cd51ef2706ab1", "IPY_MODEL_35274b3dd11c4d7ebe7912d04b706ebe", "IPY_MODEL_76fde2f98f774466bb826c5cc3f90657" ], "layout": "IPY_MODEL_edc7e95a57304afa9fb626e23e334e7b" } }, "fffb14323cbb485fbc251377f0df82be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_a99c93dcd98943aa9af6d6ae9cacb342", "IPY_MODEL_36cb688ec8c048b9b67feeb978d1ae7e", "IPY_MODEL_db6d4fa6175348ba9cb7e12d755c1b70" ], "layout": "IPY_MODEL_153ac1ceef154fb1a7d080fb4b00ca67" } } } } }, "nbformat": 4, "nbformat_minor": 4 }