# Instruction Pre-Training: Language Models are Supervised Multitask Learners This repo contains the **context-based instruction synthesizer** used in our paper **Instruction Pre-Training: Language Models are Supervised Multitask Learners**. We explore supervised multitask pre-training by proposing ***Instruction Pre-Training***, a framework that scalably augments massive raw corpora with instruction-response pairs to pre-train language models. The instruction-response pairs are generated by an efficient instruction synthesizer built on open-source models. In our experiments, we synthesize 200M instruction-response pairs covering 40+ task categories to verify the effectiveness of *Instruction Pre-Training*. ***Instruction Pre-Training* outperforms *Vanilla Pre-training* in both general pre-training from scratch and domain-adaptive continued pre-training.** In pre-training from scratch, *Instruction Pre-Training* not only improves pre-trained base models but also benefits more from further instruction tuning. In continual pre-training, *Instruction Pre-Training* enables Llama3-8B to be comparable to or even outperform Llama3-70B.

## Synthesize Instruction-Response Pairs from Any Raw Corproa We conduct multitask fine-tuning on a language model to develop an instruction synthesizer capable of generating instruction-response pairs from any raw text.

An example script to prompt the synthesizer to generate instruction-response pairs based on the given raw text is: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("instruction-pretrain/instruction-synthesizer") tokenizer = AutoTokenizer.from_pretrained("instruction-pretrain/instruction-synthesizer") # Put your raw text here: context = '''Free Fishing Weekend in NYS Slated This weekend (June 28th-29th) New Yorkers may fish for free without a license in any of the state's 7,500 lakes and ponds or 50,000 miles of rivers and streams. In addition, there are a number of free events and fishing clinics taking place across the state to encourage New Yorkers to enjoy the great outdoors. For more information, visit''' def parse_pred(pred): """Extract the list of instruction-response pairs from the prediction""" QA_str_list = pred.split('') if not pred.endswith(''): QA_str_list = QA_str_list[:-1] QA_list = [] raw_questions = [] for QA_str in QA_str_list: try: assert len(QA_str.split('')) == 2, f'invalid QA string: {QA_str}' Q_str, A_str = QA_str.split('') Q_str, A_str = Q_str.strip(), A_str.strip() assert Q_str.startswith(''), f'invalid question string: {Q_str} in QA_str: {QA_str}' assert len(A_str) > 0, f'invalid answer string in QA_str: {QA_str}' Q_str = Q_str.replace('', '').strip() assert Q_str.lower() not in raw_questions, f'duplicate question: {Q_str}' QA_list.append({'Q': Q_str, 'A': A_str}) raw_questions.append(Q_str.lower()) except: pass return QA_list def get_instruction_response_pairs(context): '''Prompt the synthesizer to generate instruction-response pairs based on the given context''' prompt = f' {context} \n\n' inputs = tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids.to(model.device) outputs = model.generate(input_ids=inputs, max_new_tokens=400)[0] pred_start = int(inputs.shape[-1]) pred = tokenizer.decode(outputs[pred_start:], skip_special_tokens=True) return parse_pred(pred) # Get the list of generated instruction-response paris instruction_response_pairs = get_instruction_response_pairs(context) # Print out the results print(f'# Context:\n{context}\n') for index, pair in enumerate(instruction_response_pairs): print(f'## Instruction {index + 1}:\n{pair["Q"]}\n## Response {index + 1}:\n{pair["A"]}\n') ``` ## Citation If you find our work helpful, please cite us: ```bibtex @inproceedings{ cheng2024adapting, title={Adapting Large Language Models via Reading Comprehension}, author={Daixuan Cheng and Shaohan Huang and Furu Wei}, booktitle={The Twelfth International Conference on Learning Representations}, year={2024}, url={https://openreview.net/forum?id=y886UXPEZ0} } ```