guilfb commited on
Commit
8154db7
·
1 Parent(s): d02460f

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +110 -0
README.md ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ language: en
4
+ tags:
5
+ - sentence-similarity
6
+ - transformers
7
+ - Education
8
+ - en
9
+ - bert
10
+ - sentence-transformers
11
+ - feature-extraction
12
+ - xnli
13
+ - stsb_multi_mt
14
+ datasets:
15
+ - xnli
16
+ - stsb_multi_mt
17
+ ---
18
+
19
+ # inokufu/bertheo-en
20
+
21
+ A [sentence-transformers](https://www.SBERT.net) model fine-tuned on course sentences. It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
22
+
23
+ ## Details
24
+
25
+ This model is based on the English bert-base-uncased pre-trained model [1, 2].
26
+
27
+ It was first fine-tuned on our learning object (LO) sentences dataset. This dataset consists of a sample of 500k sentences of course descriptions. We used standard parameter settings for fine-tuning as mentioned in the original BERT paper [2]. This allows the model to improve its performance on the target task (Masked Language Model) for domain-specific sentences.
28
+
29
+ It was then fine-tuned on a natural language inference task (XNLI) [3]. This task consists in training the model to recognize relations between sentences (contradiction, neutral, implication).
30
+
31
+ It was then fine-tuned on a text semantic similarity task (on STS data) [4]. This task consists in training the model to estimate the similarity between two sentences.
32
+
33
+ This fine-tuning process allows our model to have a semantic representation of words that is much better than the one proposed by the base model.
34
+
35
+ ## Usage (Sentence-Transformers)
36
+
37
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
38
+
39
+ ```
40
+ pip install -U sentence-transformers
41
+ ```
42
+
43
+ Then you can use the model like this:
44
+
45
+ ```python
46
+ from sentence_transformers import SentenceTransformer
47
+ sentences = ["Learn to code in python", "Become an expert in accounting"]
48
+
49
+ model = SentenceTransformer('inokufu/bert-base-uncased-xnli-sts-finetuned-education')
50
+ embeddings = model.encode(sentences)
51
+ print(embeddings)
52
+ ```
53
+
54
+
55
+
56
+ ## Usage (HuggingFace Transformers)
57
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
58
+
59
+ ```python
60
+ from transformers import AutoTokenizer, AutoModel
61
+ import torch
62
+
63
+
64
+ #Mean Pooling - Take attention mask into account for correct averaging
65
+ def mean_pooling(model_output, attention_mask):
66
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
67
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
68
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
69
+
70
+
71
+ # Sentences we want sentence embeddings for
72
+ sentences = ["Learn to code in python", "Become an expert in accounting"]
73
+
74
+ # Load model from HuggingFace Hub
75
+ tokenizer = AutoTokenizer.from_pretrained('inokufu/bert-base-uncased-xnli-sts-finetuned-education')
76
+ model = AutoModel.from_pretrained('inokufu/bert-base-uncased-xnli-sts-finetuned-education')
77
+
78
+ # Tokenize sentences
79
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
80
+
81
+ # Compute token embeddings
82
+ with torch.no_grad():
83
+ model_output = model(**encoded_input)
84
+
85
+ # Perform pooling. In this case, mean pooling.
86
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
87
+
88
+ print("Sentence embeddings:")
89
+ print(sentence_embeddings)
90
+ ```
91
+
92
+ ## Evaluation Results
93
+
94
+ STS (en) score: 84.61%
95
+
96
+
97
+ ## Model Architecture
98
+ ```
99
+ SentenceTransformer(
100
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
101
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
102
+ )
103
+ ```
104
+
105
+ ## References
106
+
107
+ [1] https://huggingface.co/bert-base-uncased <br>
108
+ [2] https://arxiv.org/abs/1810.04805 <br>
109
+ [3] https://arxiv.org/abs/1809.05053 <br>
110
+ [4] https://huggingface.co/datasets/stsb_multi_mt <br>