--- language: - el license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - el - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Greek results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: el metrics: - name: Test WER type: wer value: 102.23963133640552 - name: Test CER type: cer value: 146.28 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: el metrics: - name: Test WER type: wer value: 99.92 - name: Test CER type: cer value: 132.38 --- # wav2vec2-large-xls-r-300m-greek This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co./facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - EL dataset. It achieves the following results on the evaluation set: - Loss: 0.6592 - Wer: 0.4564 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0928 | 4.42 | 500 | 3.0804 | 1.0073 | | 1.4505 | 8.85 | 1000 | 0.9038 | 0.7330 | | 1.2207 | 13.27 | 1500 | 0.7375 | 0.6045 | | 1.0695 | 17.7 | 2000 | 0.7119 | 0.5441 | | 1.0104 | 22.12 | 2500 | 0.6069 | 0.5296 | | 0.9299 | 26.55 | 3000 | 0.6168 | 0.5206 | | 0.8588 | 30.97 | 3500 | 0.6382 | 0.5171 | | 0.7942 | 35.4 | 4000 | 0.6048 | 0.4988 | | 0.7808 | 39.82 | 4500 | 0.6730 | 0.5084 | | 0.743 | 44.25 | 5000 | 0.6749 | 0.5012 | | 0.6652 | 48.67 | 5500 | 0.6491 | 0.4735 | | 0.6386 | 53.1 | 6000 | 0.6928 | 0.4954 | | 0.5945 | 57.52 | 6500 | 0.6359 | 0.4798 | | 0.5561 | 61.95 | 7000 | 0.6409 | 0.4799 | | 0.5464 | 66.37 | 7500 | 0.6452 | 0.4691 | | 0.5119 | 70.8 | 8000 | 0.6376 | 0.4657 | | 0.474 | 75.22 | 8500 | 0.6541 | 0.4700 | | 0.45 | 79.65 | 9000 | 0.6374 | 0.4571 | | 0.4315 | 84.07 | 9500 | 0.6568 | 0.4625 | | 0.3967 | 88.5 | 10000 | 0.6636 | 0.4605 | | 0.3937 | 92.92 | 10500 | 0.6537 | 0.4597 | | 0.3788 | 97.35 | 11000 | 0.6614 | 0.4589 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0