--- language: - hy-AM license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Armenian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: hy-AM metrics: - name: Test WER type: wer value: 101.627 - name: Test CER type: cer value: 158.767 --- # wav2vec2-large-xls-r-300m-armenian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co./facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HY-AM dataset. It achieves the following results on the evaluation set: - Loss: 0.9669 - Wer: 0.6942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.7294 | 27.78 | 500 | 0.8540 | 0.9944 | | 0.8863 | 55.56 | 1000 | 0.7282 | 0.7312 | | 0.5789 | 83.33 | 1500 | 0.8178 | 0.8102 | | 0.3899 | 111.11 | 2000 | 0.8034 | 0.7701 | | 0.2869 | 138.89 | 2500 | 0.9061 | 0.6999 | | 0.1934 | 166.67 | 3000 | 0.9400 | 0.7105 | | 0.1551 | 194.44 | 3500 | 0.9667 | 0.6955 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0