from dataclasses import dataclass, field from typing import Dict, List, Optional, Tuple, Union import librosa import numpy as np import torch from coqpit import Coqpit from torch import nn from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d from torch.nn import functional as F from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm import TTS.vc.modules.freevc.commons as commons import TTS.vc.modules.freevc.modules as modules from TTS.tts.utils.speakers import SpeakerManager from TTS.utils.io import load_fsspec, save_checkpoint from TTS.vc.configs.shared_configs import BaseVCConfig from TTS.vc.models.base_vc import BaseVC from TTS.vc.modules.freevc.commons import get_padding, init_weights from TTS.vc.modules.freevc.mel_processing import mel_spectrogram_torch from TTS.vc.modules.freevc.speaker_encoder.speaker_encoder import SpeakerEncoder as SpeakerEncoderEx from TTS.vc.modules.freevc.wavlm import get_wavlm class ResidualCouplingBlock(nn.Module): def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, n_flows=4, gin_channels=0): super().__init__() self.channels = channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.n_flows = n_flows self.gin_channels = gin_channels self.flows = nn.ModuleList() for i in range(n_flows): self.flows.append( modules.ResidualCouplingLayer( channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True, ) ) self.flows.append(modules.Flip()) def forward(self, x, x_mask, g=None, reverse=False): if not reverse: for flow in self.flows: x, _ = flow(x, x_mask, g=g, reverse=reverse) else: for flow in reversed(self.flows): x = flow(x, x_mask, g=g, reverse=reverse) return x class Encoder(nn.Module): def __init__( self, in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0 ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.pre = nn.Conv1d(in_channels, hidden_channels, 1) self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels) self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) def forward(self, x, x_lengths, g=None): x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) x = self.pre(x) * x_mask x = self.enc(x, x_mask, g=g) stats = self.proj(x) * x_mask m, logs = torch.split(stats, self.out_channels, dim=1) z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask return z, m, logs, x_mask class Generator(torch.nn.Module): def __init__( self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0, ): super(Generator, self).__init__() self.num_kernels = len(resblock_kernel_sizes) self.num_upsamples = len(upsample_rates) self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3) resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): self.ups.append( weight_norm( ConvTranspose1d( upsample_initial_channel // (2**i), upsample_initial_channel // (2 ** (i + 1)), k, u, padding=(k - u) // 2, ) ) ) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = upsample_initial_channel // (2 ** (i + 1)) for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): self.resblocks.append(resblock(ch, k, d)) self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) self.ups.apply(init_weights) if gin_channels != 0: self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) def forward(self, x, g=None): x = self.conv_pre(x) if g is not None: x = x + self.cond(g) for i in range(self.num_upsamples): x = F.leaky_relu(x, modules.LRELU_SLOPE) x = self.ups[i](x) xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i * self.num_kernels + j](x) else: xs += self.resblocks[i * self.num_kernels + j](x) x = xs / self.num_kernels x = F.leaky_relu(x) x = self.conv_post(x) x = torch.tanh(x) return x def remove_weight_norm(self): print("Removing weight norm...") for l in self.ups: remove_weight_norm(l) for l in self.resblocks: l.remove_weight_norm() class DiscriminatorP(torch.nn.Module): def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): super(DiscriminatorP, self).__init__() self.period = period self.use_spectral_norm = use_spectral_norm norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList( [ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))), ] ) self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) def forward(self, x): fmap = [] # 1d to 2d b, c, t = x.shape if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), "reflect") t = t + n_pad x = x.view(b, c, t // self.period, self.period) for l in self.convs: x = l(x) x = F.leaky_relu(x, modules.LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class DiscriminatorS(torch.nn.Module): def __init__(self, use_spectral_norm=False): super(DiscriminatorS, self).__init__() norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList( [ norm_f(Conv1d(1, 16, 15, 1, padding=7)), norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), ] ) self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) def forward(self, x): fmap = [] for l in self.convs: x = l(x) x = F.leaky_relu(x, modules.LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiPeriodDiscriminator(torch.nn.Module): def __init__(self, use_spectral_norm=False): super(MultiPeriodDiscriminator, self).__init__() periods = [2, 3, 5, 7, 11] discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods] self.discriminators = nn.ModuleList(discs) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) y_d_gs.append(y_d_g) fmap_rs.append(fmap_r) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class SpeakerEncoder(torch.nn.Module): def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256): super(SpeakerEncoder, self).__init__() self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True) self.linear = nn.Linear(model_hidden_size, model_embedding_size) self.relu = nn.ReLU() def forward(self, mels): self.lstm.flatten_parameters() _, (hidden, _) = self.lstm(mels) embeds_raw = self.relu(self.linear(hidden[-1])) return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True) def compute_partial_slices(self, total_frames, partial_frames, partial_hop): mel_slices = [] for i in range(0, total_frames - partial_frames, partial_hop): mel_range = torch.arange(i, i + partial_frames) mel_slices.append(mel_range) return mel_slices def embed_utterance(self, mel, partial_frames=128, partial_hop=64): mel_len = mel.size(1) last_mel = mel[:, -partial_frames:] if mel_len > partial_frames: mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop) mels = list(mel[:, s] for s in mel_slices) mels.append(last_mel) mels = torch.stack(tuple(mels), 0).squeeze(1) with torch.no_grad(): partial_embeds = self(mels) embed = torch.mean(partial_embeds, axis=0).unsqueeze(0) # embed = embed / torch.linalg.norm(embed, 2) else: with torch.no_grad(): embed = self(last_mel) return embed @dataclass class FreeVCAudioConfig(Coqpit): """Audio configuration Args: max_wav_value (float): The maximum value of the waveform. input_sample_rate (int): The sampling rate of the input waveform. output_sample_rate (int): The sampling rate of the output waveform. filter_length (int): The length of the filter. hop_length (int): The hop length. win_length (int): The window length. n_mel_channels (int): The number of mel channels. mel_fmin (float): The minimum frequency of the mel filterbank. mel_fmax (Optional[float]): The maximum frequency of the mel filterbank. """ max_wav_value: float = field(default=32768.0) input_sample_rate: int = field(default=16000) output_sample_rate: int = field(default=24000) filter_length: int = field(default=1280) hop_length: int = field(default=320) win_length: int = field(default=1280) n_mel_channels: int = field(default=80) mel_fmin: float = field(default=0.0) mel_fmax: Optional[float] = field(default=None) @dataclass class FreeVCArgs(Coqpit): """FreeVC model arguments Args: spec_channels (int): The number of channels in the spectrogram. inter_channels (int): The number of channels in the intermediate layers. hidden_channels (int): The number of channels in the hidden layers. filter_channels (int): The number of channels in the filter layers. n_heads (int): The number of attention heads. n_layers (int): The number of layers. kernel_size (int): The size of the kernel. p_dropout (float): The dropout probability. resblock (str): The type of residual block. resblock_kernel_sizes (List[int]): The kernel sizes for the residual blocks. resblock_dilation_sizes (List[List[int]]): The dilation sizes for the residual blocks. upsample_rates (List[int]): The upsample rates. upsample_initial_channel (int): The number of channels in the initial upsample layer. upsample_kernel_sizes (List[int]): The kernel sizes for the upsample layers. n_layers_q (int): The number of layers in the quantization network. use_spectral_norm (bool): Whether to use spectral normalization. gin_channels (int): The number of channels in the global conditioning vector. ssl_dim (int): The dimension of the self-supervised learning embedding. use_spk (bool): Whether to use external speaker encoder. """ spec_channels: int = field(default=641) inter_channels: int = field(default=192) hidden_channels: int = field(default=192) filter_channels: int = field(default=768) n_heads: int = field(default=2) n_layers: int = field(default=6) kernel_size: int = field(default=3) p_dropout: float = field(default=0.1) resblock: str = field(default="1") resblock_kernel_sizes: List[int] = field(default_factory=lambda: [3, 7, 11]) resblock_dilation_sizes: List[List[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]) upsample_rates: List[int] = field(default_factory=lambda: [10, 8, 2, 2]) upsample_initial_channel: int = field(default=512) upsample_kernel_sizes: List[int] = field(default_factory=lambda: [16, 16, 4, 4]) n_layers_q: int = field(default=3) use_spectral_norm: bool = field(default=False) gin_channels: int = field(default=256) ssl_dim: int = field(default=1024) use_spk: bool = field(default=False) num_spks: int = field(default=0) segment_size: int = field(default=8960) class FreeVC(BaseVC): """ Papaer:: https://arxiv.org/abs/2210.15418# Paper Abstract:: Voice conversion (VC) can be achieved by first extracting source content information and target speaker information, and then reconstructing waveform with these information. However, current approaches normally either extract dirty content information with speaker information leaked in, or demand a large amount of annotated data for training. Besides, the quality of reconstructed waveform can be degraded by the mismatch between conversion model and vocoder. In this paper, we adopt the end-to-end framework of VITS for high-quality waveform reconstruction, and propose strategies for clean content information extraction without text annotation. We disentangle content information by imposing an information bottleneck to WavLM features, and propose the spectrogram-resize based data augmentation to improve the purity of extracted content information. Experimental results show that the proposed method outperforms the latest VC models trained with annotated data and has greater robustness. Original Code:: https://github.com/OlaWod/FreeVC Examples: >>> from TTS.vc.configs.freevc_config import FreeVCConfig >>> from TTS.vc.models.freevc import FreeVC >>> config = FreeVCConfig() >>> model = FreeVC(config) """ def __init__(self, config: Coqpit, speaker_manager: SpeakerManager = None): super().__init__(config, None, speaker_manager, None) self.init_multispeaker(config) self.spec_channels = self.args.spec_channels self.inter_channels = self.args.inter_channels self.hidden_channels = self.args.hidden_channels self.filter_channels = self.args.filter_channels self.n_heads = self.args.n_heads self.n_layers = self.args.n_layers self.kernel_size = self.args.kernel_size self.p_dropout = self.args.p_dropout self.resblock = self.args.resblock self.resblock_kernel_sizes = self.args.resblock_kernel_sizes self.resblock_dilation_sizes = self.args.resblock_dilation_sizes self.upsample_rates = self.args.upsample_rates self.upsample_initial_channel = self.args.upsample_initial_channel self.upsample_kernel_sizes = self.args.upsample_kernel_sizes self.segment_size = self.args.segment_size self.gin_channels = self.args.gin_channels self.ssl_dim = self.args.ssl_dim self.use_spk = self.args.use_spk self.enc_p = Encoder(self.args.ssl_dim, self.inter_channels, self.hidden_channels, 5, 1, 16) self.dec = Generator( self.inter_channels, self.resblock, self.resblock_kernel_sizes, self.resblock_dilation_sizes, self.upsample_rates, self.upsample_initial_channel, self.upsample_kernel_sizes, gin_channels=self.gin_channels, ) self.enc_q = Encoder( self.spec_channels, self.inter_channels, self.hidden_channels, 5, 1, 16, gin_channels=self.gin_channels ) self.flow = ResidualCouplingBlock( self.inter_channels, self.hidden_channels, 5, 1, 4, gin_channels=self.gin_channels ) if not self.use_spk: self.enc_spk = SpeakerEncoder(model_hidden_size=self.gin_channels, model_embedding_size=self.gin_channels) else: self.load_pretrained_speaker_encoder() self.wavlm = get_wavlm() @property def device(self): return next(self.parameters()).device def load_pretrained_speaker_encoder(self): """Load pretrained speaker encoder model as mentioned in the paper.""" print(" > Loading pretrained speaker encoder model ...") self.enc_spk_ex = SpeakerEncoderEx( "https://github.com/coqui-ai/TTS/releases/download/v0.13.0_models/speaker_encoder.pt" ) def init_multispeaker(self, config: Coqpit): """Initialize multi-speaker modules of a model. A model can be trained either with a speaker embedding layer or with external `d_vectors` computed from a speaker encoder model. You must provide a `speaker_manager` at initialization to set up the multi-speaker modules. Args: config (Coqpit): Model configuration. data (List, optional): Dataset items to infer number of speakers. Defaults to None. """ self.num_spks = self.args.num_spks if self.speaker_manager: self.num_spks = self.speaker_manager.num_spks def forward( self, c: torch.Tensor, spec: torch.Tensor, g: Optional[torch.Tensor] = None, mel: Optional[torch.Tensor] = None, c_lengths: Optional[torch.Tensor] = None, spec_lengths: Optional[torch.Tensor] = None, ) -> Tuple[ torch.Tensor, torch.Tensor, torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor], ]: """ Forward pass of the model. Args: c: WavLM features. Shape: (batch_size, c_seq_len). spec: The input spectrogram. Shape: (batch_size, spec_seq_len, spec_dim). g: The speaker embedding. Shape: (batch_size, spk_emb_dim). mel: The input mel-spectrogram for the speaker encoder. Shape: (batch_size, mel_seq_len, mel_dim). c_lengths: The lengths of the WavLM features. Shape: (batch_size,). spec_lengths: The lengths of the spectrogram. Shape: (batch_size,). Returns: o: The output spectrogram. Shape: (batch_size, spec_seq_len, spec_dim). ids_slice: The slice indices. Shape: (batch_size, num_slices). spec_mask: The spectrogram mask. Shape: (batch_size, spec_seq_len). (z, z_p, m_p, logs_p, m_q, logs_q): A tuple of latent variables. """ # If c_lengths is None, set it to the length of the last dimension of c if c_lengths is None: c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device) # If spec_lengths is None, set it to the length of the last dimension of spec if spec_lengths is None: spec_lengths = (torch.ones(spec.size(0)) * spec.size(-1)).to(spec.device) # If use_spk is False, compute g from mel using enc_spk g = None if not self.use_spk: g = self.enc_spk(mel).unsqueeze(-1) # Compute m_p, logs_p, z, m_q, logs_q, and spec_mask using enc_p and enc_q _, m_p, logs_p, _ = self.enc_p(c, c_lengths) z, m_q, logs_q, spec_mask = self.enc_q(spec.transpose(1, 2), spec_lengths, g=g) # Compute z_p using flow z_p = self.flow(z, spec_mask, g=g) # Randomly slice z and compute o using dec z_slice, ids_slice = commons.rand_slice_segments(z, spec_lengths, self.segment_size) o = self.dec(z_slice, g=g) return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q) @torch.no_grad() def inference(self, c, g=None, mel=None, c_lengths=None): """ Inference pass of the model Args: c (torch.Tensor): Input tensor. Shape: (batch_size, c_seq_len). g (torch.Tensor): Speaker embedding tensor. Shape: (batch_size, spk_emb_dim). mel (torch.Tensor): Mel-spectrogram tensor. Shape: (batch_size, mel_seq_len, mel_dim). c_lengths (torch.Tensor): Lengths of the input tensor. Shape: (batch_size,). Returns: torch.Tensor: Output tensor. """ if c_lengths == None: c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device) if not self.use_spk: g = self.enc_spk.embed_utterance(mel) g = g.unsqueeze(-1) z_p, m_p, logs_p, c_mask = self.enc_p(c, c_lengths) z = self.flow(z_p, c_mask, g=g, reverse=True) o = self.dec(z * c_mask, g=g) return o def extract_wavlm_features(self, y): """Extract WavLM features from an audio tensor. Args: y (torch.Tensor): Audio tensor. Shape: (batch_size, audio_seq_len). """ with torch.no_grad(): c = self.wavlm.extract_features(y)[0] c = c.transpose(1, 2) return c def load_audio(self, wav): """Read and format the input audio.""" if isinstance(wav, str): wav, _ = librosa.load(wav, sr=self.config.audio.input_sample_rate) if isinstance(wav, np.ndarray): wav = torch.from_numpy(wav).to(self.device) if isinstance(wav, torch.Tensor): wav = wav.to(self.device) if isinstance(wav, list): wav = torch.from_numpy(np.array(wav)).to(self.device) return wav.float() @torch.inference_mode() def voice_conversion(self, src, tgt): """ Voice conversion pass of the model. Args: src (str or torch.Tensor): Source utterance. tgt (str or torch.Tensor): Target utterance. Returns: torch.Tensor: Output tensor. """ wav_tgt = self.load_audio(tgt).cpu().numpy() wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20) if self.config.model_args.use_spk: g_tgt = self.enc_spk_ex.embed_utterance(wav_tgt) g_tgt = torch.from_numpy(g_tgt)[None, :, None].to(self.device) else: wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(self.device) mel_tgt = mel_spectrogram_torch( wav_tgt, self.config.audio.filter_length, self.config.audio.n_mel_channels, self.config.audio.input_sample_rate, self.config.audio.hop_length, self.config.audio.win_length, self.config.audio.mel_fmin, self.config.audio.mel_fmax, ) # src wav_src = self.load_audio(src) c = self.extract_wavlm_features(wav_src[None, :]) if self.config.model_args.use_spk: audio = self.inference(c, g=g_tgt) else: audio = self.inference(c, mel=mel_tgt.transpose(1, 2)) audio = audio[0][0].data.cpu().float().numpy() return audio def eval_step(): ... @staticmethod def init_from_config(config: "VitsConfig", samples: Union[List[List], List[Dict]] = None, verbose=True): model = FreeVC(config) return model def load_checkpoint(self, config, checkpoint_path, eval=False, strict=True, cache=False): state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) self.load_state_dict(state["model"], strict=strict) if eval: self.eval() def train_step(): ... @dataclass class FreeVCConfig(BaseVCConfig): """Defines parameters for FreeVC End2End TTS model. Args: model (str): Model name. Do not change unless you know what you are doing. model_args (FreeVCArgs): Model architecture arguments. Defaults to `FreeVCArgs()`. audio (FreeVCAudioConfig): Audio processing configuration. Defaults to `FreeVCAudioConfig()`. grad_clip (List): Gradient clipping thresholds for each optimizer. Defaults to `[1000.0, 1000.0]`. lr_gen (float): Initial learning rate for the generator. Defaults to 0.0002. lr_disc (float): Initial learning rate for the discriminator. Defaults to 0.0002. lr_scheduler_gen (str): Name of the learning rate scheduler for the generator. One of the `torch.optim.lr_scheduler.*`. Defaults to `ExponentialLR`. lr_scheduler_gen_params (dict): Parameters for the learning rate scheduler of the generator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`. lr_scheduler_disc (str): Name of the learning rate scheduler for the discriminator. One of the `torch.optim.lr_scheduler.*`. Defaults to `ExponentialLR`. lr_scheduler_disc_params (dict): Parameters for the learning rate scheduler of the discriminator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`. scheduler_after_epoch (bool): If true, step the schedulers after each epoch else after each step. Defaults to `False`. optimizer (str): Name of the optimizer to use with both the generator and the discriminator networks. One of the `torch.optim.*`. Defaults to `AdamW`. kl_loss_alpha (float): Loss weight for KL loss. Defaults to 1.0. disc_loss_alpha (float): Loss weight for the discriminator loss. Defaults to 1.0. gen_loss_alpha (float): Loss weight for the generator loss. Defaults to 1.0. feat_loss_alpha (float): Loss weight for the feature matching loss. Defaults to 1.0. mel_loss_alpha (float): Loss weight for the mel loss. Defaults to 45.0. return_wav (bool): If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`. compute_linear_spec (bool): If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`. use_weighted_sampler (bool): If true, use weighted sampler with bucketing for balancing samples between datasets used in training. Defaults to `False`. weighted_sampler_attrs (dict): Key retuned by the formatter to be used for weighted sampler. For example `{"root_path": 2.0, "speaker_name": 1.0}` sets sample probabilities by overweighting `root_path` by 2.0. Defaults to `{}`. weighted_sampler_multipliers (dict): Weight each unique value of a key returned by the formatter for weighted sampling. For example `{"root_path":{"/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-100/":1.0, "/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-360/": 0.5}`. It will sample instances from `train-clean-100` 2 times more than `train-clean-360`. Defaults to `{}`. r (int): Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`. add_blank (bool): If true, a blank token is added in between every character. Defaults to `True`. test_sentences (List[List]): List of sentences with speaker and language information to be used for testing. language_ids_file (str): Path to the language ids file. use_language_embedding (bool): If true, language embedding is used. Defaults to `False`. Note: Check :class:`TTS.tts.configs.shared_configs.BaseTTSConfig` for the inherited parameters. Example: >>> from TTS.tts.configs.freevc_config import FreeVCConfig >>> config = FreeVCConfig() """ model: str = "freevc" # model specific params model_args: FreeVCArgs = FreeVCArgs() audio: FreeVCAudioConfig = FreeVCAudioConfig() # optimizer # TODO with training support # loss params # TODO with training support # data loader params return_wav: bool = True compute_linear_spec: bool = True # sampler params use_weighted_sampler: bool = False # TODO: move it to the base config weighted_sampler_attrs: dict = field(default_factory=lambda: {}) weighted_sampler_multipliers: dict = field(default_factory=lambda: {}) # overrides r: int = 1 # DO NOT CHANGE add_blank: bool = True # multi-speaker settings # use speaker embedding layer num_speakers: int = 0 speakers_file: str = None speaker_embedding_channels: int = 256 # use d-vectors use_d_vector_file: bool = False d_vector_file: List[str] = None d_vector_dim: int = None def __post_init__(self): for key, val in self.model_args.items(): if hasattr(self, key): self[key] = val