|
import os |
|
|
|
from trainer import Trainer, TrainerArgs |
|
|
|
from TTS.utils.audio import AudioProcessor |
|
from TTS.vocoder.configs import UnivnetConfig |
|
from TTS.vocoder.datasets.preprocess import load_wav_data |
|
from TTS.vocoder.models.gan import GAN |
|
|
|
output_path = os.path.dirname(os.path.abspath(__file__)) |
|
config = UnivnetConfig( |
|
batch_size=64, |
|
eval_batch_size=16, |
|
num_loader_workers=4, |
|
num_eval_loader_workers=4, |
|
run_eval=True, |
|
test_delay_epochs=-1, |
|
epochs=1000, |
|
seq_len=8192, |
|
pad_short=2000, |
|
use_noise_augment=True, |
|
eval_split_size=10, |
|
print_step=25, |
|
print_eval=False, |
|
mixed_precision=False, |
|
lr_gen=1e-4, |
|
lr_disc=1e-4, |
|
data_path=os.path.join(output_path, "../LJSpeech-1.1/wavs/"), |
|
output_path=output_path, |
|
) |
|
|
|
|
|
ap = AudioProcessor(**config.audio.to_dict()) |
|
|
|
|
|
eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size) |
|
|
|
|
|
model = GAN(config, ap) |
|
|
|
|
|
trainer = Trainer( |
|
TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples |
|
) |
|
trainer.fit() |
|
|