|
import os |
|
|
|
from trainer import Trainer, TrainerArgs |
|
|
|
from TTS.config.shared_configs import BaseAudioConfig, BaseDatasetConfig |
|
from TTS.tts.configs.fastspeech2_config import Fastspeech2Config |
|
from TTS.tts.datasets import load_tts_samples |
|
from TTS.tts.models.forward_tts import ForwardTTS |
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer |
|
from TTS.utils.audio import AudioProcessor |
|
from TTS.utils.manage import ModelManager |
|
|
|
output_path = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
|
|
dataset_config = BaseDatasetConfig( |
|
formatter="ljspeech", |
|
meta_file_train="metadata.csv", |
|
|
|
path=os.path.join(output_path, "../LJSpeech-1.1/"), |
|
) |
|
|
|
audio_config = BaseAudioConfig( |
|
sample_rate=22050, |
|
do_trim_silence=True, |
|
trim_db=60.0, |
|
signal_norm=False, |
|
mel_fmin=0.0, |
|
mel_fmax=8000, |
|
spec_gain=1.0, |
|
log_func="np.log", |
|
ref_level_db=20, |
|
preemphasis=0.0, |
|
) |
|
|
|
config = Fastspeech2Config( |
|
run_name="fastspeech2_ljspeech", |
|
audio=audio_config, |
|
batch_size=32, |
|
eval_batch_size=16, |
|
num_loader_workers=8, |
|
num_eval_loader_workers=4, |
|
compute_input_seq_cache=True, |
|
compute_f0=True, |
|
f0_cache_path=os.path.join(output_path, "f0_cache"), |
|
compute_energy=True, |
|
energy_cache_path=os.path.join(output_path, "energy_cache"), |
|
run_eval=True, |
|
test_delay_epochs=-1, |
|
epochs=1000, |
|
text_cleaner="english_cleaners", |
|
use_phonemes=True, |
|
phoneme_language="en-us", |
|
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), |
|
precompute_num_workers=4, |
|
print_step=50, |
|
print_eval=False, |
|
mixed_precision=False, |
|
max_seq_len=500000, |
|
output_path=output_path, |
|
datasets=[dataset_config], |
|
) |
|
|
|
|
|
if not config.model_args.use_aligner: |
|
manager = ModelManager() |
|
model_path, config_path, _ = manager.download_model("tts_models/en/ljspeech/tacotron2-DCA") |
|
|
|
os.system( |
|
f"python TTS/bin/compute_attention_masks.py --model_path {model_path} --config_path {config_path} --dataset ljspeech --dataset_metafile metadata.csv --data_path ./recipes/ljspeech/LJSpeech-1.1/ --use_cuda true" |
|
) |
|
|
|
|
|
|
|
|
|
ap = AudioProcessor.init_from_config(config) |
|
|
|
|
|
|
|
|
|
tokenizer, config = TTSTokenizer.init_from_config(config) |
|
|
|
|
|
|
|
|
|
|
|
|
|
train_samples, eval_samples = load_tts_samples( |
|
dataset_config, |
|
eval_split=True, |
|
eval_split_max_size=config.eval_split_max_size, |
|
eval_split_size=config.eval_split_size, |
|
) |
|
|
|
|
|
model = ForwardTTS(config, ap, tokenizer, speaker_manager=None) |
|
|
|
|
|
trainer = Trainer( |
|
TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples |
|
) |
|
trainer.fit() |
|
|