inetnuc commited on
Commit
cd0867d
1 Parent(s): 2324e19

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -0
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/mistral-7b-v0.3-bnb-4bit
3
+ language:
4
+ - en
5
+ license: apache-2.0
6
+ tags:
7
+ - text-generation-inference
8
+ - transformers
9
+ - unsloth
10
+ - llama
11
+ - gguf
12
+ ---
13
+
14
+ # LLAMA-3.1 8B Chat Nuclear Model
15
+
16
+ - **Developed by:** inetnuc
17
+ - **License:** apache-2.0
18
+ - **Finetuned from model:** unsloth/mistral-7b-v0.3-bnb-4bit
19
+
20
+ This mistral-7b-v0.3 model was finetuned to enhance capabilities in text generation for nuclear-related topics. The training was accelerated using [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library, achieving a 2x faster performance.
21
+
22
+ ## Finetuning Process
23
+ The model was finetuned using the Unsloth library, leveraging its efficient training capabilities. The process included the following steps:
24
+
25
+ 1. **Data Preparation:** Loaded and preprocessed nuclear-related data.
26
+ 2. **Model Loading:** Utilized `unsloth/llama-3-8b-bnb-4bit` as the base model.
27
+ 3. **LoRA Patching:** Applied LoRA (Low-Rank Adaptation) for efficient training.
28
+ 4. **Training:** Finetuned the model using Hugging Face's TRL library with optimized hyperparameters.
29
+
30
+ ## Model Details
31
+
32
+ - **Base Model:** `unsloth/mistral-7b-v0.3-bnb-4bit`
33
+ - **Language:** English (`en`)
34
+ - **License:** Apache-2.0
35
+
36
+ ## Author
37
+
38
+ **MUSTAFA UMUT OZBEK**
39
+
40
+ **https://www.linkedin.com/in/mustafaumutozbek/**
41
+ **https://x.com/m_umut_ozbek**
42
+
43
+
44
+ ## Usage
45
+
46
+ ### Loading the Model
47
+
48
+ You can load the model and tokenizer using the following code snippet:
49
+
50
+ ```python
51
+ from transformers import AutoModelForCausalLM, AutoTokenizer
52
+
53
+ # Load the tokenizer and model
54
+ tokenizer = AutoTokenizer.from_pretrained("inetnuc/inetnuc/mistral-7b-v0.3-bnb-4bit-chat-nuclear-lora-f16")
55
+ model = AutoModelForCausalLM.from_pretrained("inetnuc/inetnuc/mistral-7b-v0.3-bnb-4bit-chat-nuclear-lora-f16")
56
+
57
+ # Example of generating text
58
+ inputs = tokenizer("what is the iaea approach for cyber security?", return_tensors="pt")
59
+ outputs = model.generate(**inputs, max_new_tokens=128)
60
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
61
+