--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - audiofolder metrics: - f1 - precision - recall model-index: - name: my_awesome_mind_model results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: initial_audio split: test args: initial_audio metrics: - name: F1 type: f1 value: 0.2564102564102564 - name: Precision type: precision value: 0.7142857142857143 - name: Recall type: recall value: 0.15625 --- # my_awesome_mind_model This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co./facebook/wav2vec2-base) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6889 - F1: 0.2564 - Precision: 0.7143 - Recall: 0.1562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:| | No log | 1.0 | 2 | 0.6914 | 0.2162 | 0.8 | 0.125 | | No log | 2.0 | 4 | 0.6894 | 0.4815 | 0.5909 | 0.4062 | | No log | 3.0 | 6 | 0.6887 | 0.3256 | 0.6364 | 0.2188 | | No log | 4.0 | 8 | 0.6881 | 0.3415 | 0.7778 | 0.2188 | | 0.6907 | 5.0 | 10 | 0.6883 | 0.3415 | 0.7778 | 0.2188 | | 0.6907 | 6.0 | 12 | 0.6890 | 0.2564 | 0.7143 | 0.1562 | | 0.6907 | 7.0 | 14 | 0.6894 | 0.2564 | 0.7143 | 0.1562 | | 0.6907 | 8.0 | 16 | 0.6894 | 0.2105 | 0.6667 | 0.125 | | 0.6907 | 9.0 | 18 | 0.6890 | 0.2564 | 0.7143 | 0.1562 | | 0.6851 | 10.0 | 20 | 0.6889 | 0.2564 | 0.7143 | 0.1562 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1 - Datasets 3.0.0 - Tokenizers 0.19.1