--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - audiofolder metrics: - f1 - precision - recall model-index: - name: my_awesome_mind_model results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: initial_audio split: test args: initial_audio metrics: - name: F1 type: f1 value: 0.4 - name: Precision type: precision value: 0.6923076923076923 - name: Recall type: recall value: 0.28125 --- # my_awesome_mind_model This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co./facebook/wav2vec2-base) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8348 - F1: 0.4 - Precision: 0.6923 - Recall: 0.2812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:| | No log | 1.0 | 2 | 1.0602 | 0.6667 | 0.5 | 1.0 | | No log | 2.0 | 4 | 1.0043 | 0.6667 | 0.5 | 1.0 | | No log | 3.0 | 6 | 0.9622 | 0.625 | 0.5208 | 0.7812 | | No log | 4.0 | 8 | 0.9279 | 0.5902 | 0.6207 | 0.5625 | | 1.0103 | 5.0 | 10 | 0.9005 | 0.5098 | 0.6842 | 0.4062 | | 1.0103 | 6.0 | 12 | 0.8782 | 0.4286 | 0.9 | 0.2812 | | 1.0103 | 7.0 | 14 | 0.8611 | 0.4651 | 0.9091 | 0.3125 | | 1.0103 | 8.0 | 16 | 0.8478 | 0.3810 | 0.8 | 0.25 | | 1.0103 | 9.0 | 18 | 0.8385 | 0.4 | 0.6923 | 0.2812 | | 0.8578 | 10.0 | 20 | 0.8348 | 0.4 | 0.6923 | 0.2812 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1 - Datasets 3.0.0 - Tokenizers 0.19.1