--- language: - he license: apache-2.0 tags: - generated_from_trainer - he - robust-speech-event datasets: - imvladikon/hebrew_speech_kan - imvladikon/hebrew_speech_coursera metrics: - wer base_model: facebook/wav2vec2-xls-r-300m model-index: - name: wav2vec2-xls-r-300m-lm-hebrew results: [] --- # wav2vec2-xls-r-300m-lm-hebrew This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co./facebook/wav2vec2-xls-r-300m) on the None dataset with adding ngram models according to [Boosting Wav2Vec2 with n-grams in 🤗 Transformers](https://huggingface.co./blog/wav2vec2-with-ngram) ## Usage check package: https://github.com/imvladikon/wav2vec2-hebrew or use transformers pipeline: ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "imvladikon/wav2vec2-xls-r-300m-lm-hebrew" sample_iter = iter(load_dataset("google/fleurs", "he_il", split="test", streaming=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), sample["audio"]["sampling_rate"], 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text print(transcription) ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0