imvladikon
commited on
Commit
路
f6079f4
1
Parent(s):
8b7806c
init
Browse files- README.md +105 -0
- added_tokens.json +1 -0
- all_results.json +14 -0
- config.json +107 -0
- preprocessor_config.json +9 -0
- pytorch_model.bin +3 -0
- run_train.py +981 -0
- run_train.sh +39 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- train_results.json +8 -0
- trainer_state.json +394 -0
- training_args.bin +3 -0
- validation_results.json +9 -0
- vocab.json +1 -0
README.md
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- he
|
4 |
+
tags:
|
5 |
+
- automatic-speech-recognition
|
6 |
+
- robust-speech-event
|
7 |
+
- he
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: wav2vec2-xls-r-300m-hebrew
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# wav2vec2-xls-r-300m-hebrew
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the private dataset with stats:
|
20 |
+
|
21 |
+
| split |size | n_samples | duration(hrs)| |
|
22 |
+
|---|---|---|---|---|
|
23 |
+
|train|4.19gb| 20306 | 28 | |
|
24 |
+
|dev |1.05gb| 5076 | 7 | |
|
25 |
+
|
26 |
+
|
27 |
+
It achieves the following results on the evaluation set:
|
28 |
+
- Loss: 0.5438
|
29 |
+
- Wer: 0.1773
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 0.0003
|
49 |
+
- train_batch_size: 8
|
50 |
+
- eval_batch_size: 8
|
51 |
+
- seed: 42
|
52 |
+
- distributed_type: multi-GPU
|
53 |
+
- num_devices: 2
|
54 |
+
- gradient_accumulation_steps: 4
|
55 |
+
- total_train_batch_size: 64
|
56 |
+
- total_eval_batch_size: 16
|
57 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
58 |
+
- lr_scheduler_type: linear
|
59 |
+
- lr_scheduler_warmup_steps: 1000
|
60 |
+
- num_epochs: 100.0
|
61 |
+
- mixed_precision_training: Native AMP
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
66 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
67 |
+
| No log | 3.15 | 1000 | 0.5203 | 0.4333 |
|
68 |
+
| 1.4284 | 6.31 | 2000 | 0.4816 | 0.3951 |
|
69 |
+
| 1.4284 | 9.46 | 3000 | 0.4315 | 0.3546 |
|
70 |
+
| 1.283 | 12.62 | 4000 | 0.4278 | 0.3404 |
|
71 |
+
| 1.283 | 15.77 | 5000 | 0.4090 | 0.3054 |
|
72 |
+
| 1.1777 | 18.93 | 6000 | 0.3893 | 0.3006 |
|
73 |
+
| 1.1777 | 22.08 | 7000 | 0.3968 | 0.2857 |
|
74 |
+
| 1.0994 | 25.24 | 8000 | 0.3892 | 0.2751 |
|
75 |
+
| 1.0994 | 28.39 | 9000 | 0.4061 | 0.2690 |
|
76 |
+
| 1.0323 | 31.54 | 10000 | 0.4114 | 0.2507 |
|
77 |
+
| 1.0323 | 34.7 | 11000 | 0.4021 | 0.2508 |
|
78 |
+
| 0.9623 | 37.85 | 12000 | 0.4032 | 0.2378 |
|
79 |
+
| 0.9623 | 41.01 | 13000 | 0.4148 | 0.2374 |
|
80 |
+
| 0.9077 | 44.16 | 14000 | 0.4350 | 0.2323 |
|
81 |
+
| 0.9077 | 47.32 | 15000 | 0.4515 | 0.2246 |
|
82 |
+
| 0.8573 | 50.47 | 16000 | 0.4474 | 0.2180 |
|
83 |
+
| 0.8573 | 53.63 | 17000 | 0.4649 | 0.2171 |
|
84 |
+
| 0.8083 | 56.78 | 18000 | 0.4455 | 0.2102 |
|
85 |
+
| 0.8083 | 59.94 | 19000 | 0.4587 | 0.2092 |
|
86 |
+
| 0.769 | 63.09 | 20000 | 0.4794 | 0.2012 |
|
87 |
+
| 0.769 | 66.25 | 21000 | 0.4845 | 0.2007 |
|
88 |
+
| 0.7308 | 69.4 | 22000 | 0.4937 | 0.2008 |
|
89 |
+
| 0.7308 | 72.55 | 23000 | 0.4920 | 0.1895 |
|
90 |
+
| 0.6927 | 75.71 | 24000 | 0.5179 | 0.1911 |
|
91 |
+
| 0.6927 | 78.86 | 25000 | 0.5202 | 0.1877 |
|
92 |
+
| 0.6622 | 82.02 | 26000 | 0.5266 | 0.1840 |
|
93 |
+
| 0.6622 | 85.17 | 27000 | 0.5351 | 0.1854 |
|
94 |
+
| 0.6315 | 88.33 | 28000 | 0.5373 | 0.1811 |
|
95 |
+
| 0.6315 | 91.48 | 29000 | 0.5331 | 0.1792 |
|
96 |
+
| 0.6075 | 94.64 | 30000 | 0.5390 | 0.1779 |
|
97 |
+
| 0.6075 | 97.79 | 31000 | 0.5459 | 0.1773 |
|
98 |
+
|
99 |
+
|
100 |
+
### Framework versions
|
101 |
+
|
102 |
+
- Transformers 4.17.0.dev0
|
103 |
+
- Pytorch 1.10.2+cu102
|
104 |
+
- Datasets 1.18.2.dev0
|
105 |
+
- Tokenizers 0.11.0
|
added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<s>": 30, "</s>": 31}
|
all_results.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 100.0,
|
3 |
+
"eval_loss": 0.5438345074653625,
|
4 |
+
"eval_runtime": 140.268,
|
5 |
+
"eval_samples": 5076,
|
6 |
+
"eval_samples_per_second": 36.188,
|
7 |
+
"eval_steps_per_second": 2.267,
|
8 |
+
"eval_wer": 0.177349387392344,
|
9 |
+
"train_loss": 0.8928292760036721,
|
10 |
+
"train_runtime": 80759.6589,
|
11 |
+
"train_samples": 20306,
|
12 |
+
"train_samples_per_second": 25.144,
|
13 |
+
"train_steps_per_second": 0.393
|
14 |
+
}
|
config.json
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "imvladikon/wav2vec2-xls-r-300m-hebrew",
|
3 |
+
"activation_dropout": 0.1,
|
4 |
+
"adapter_kernel_size": 3,
|
5 |
+
"adapter_stride": 2,
|
6 |
+
"add_adapter": false,
|
7 |
+
"apply_spec_augment": true,
|
8 |
+
"architectures": [
|
9 |
+
"Wav2Vec2ForCTC"
|
10 |
+
],
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"classifier_proj_size": 256,
|
14 |
+
"codevector_dim": 768,
|
15 |
+
"contrastive_logits_temperature": 0.1,
|
16 |
+
"conv_bias": true,
|
17 |
+
"conv_dim": [
|
18 |
+
512,
|
19 |
+
512,
|
20 |
+
512,
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512
|
25 |
+
],
|
26 |
+
"conv_kernel": [
|
27 |
+
10,
|
28 |
+
3,
|
29 |
+
3,
|
30 |
+
3,
|
31 |
+
3,
|
32 |
+
2,
|
33 |
+
2
|
34 |
+
],
|
35 |
+
"conv_stride": [
|
36 |
+
5,
|
37 |
+
2,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2
|
43 |
+
],
|
44 |
+
"ctc_loss_reduction": "mean",
|
45 |
+
"ctc_zero_infinity": false,
|
46 |
+
"diversity_loss_weight": 0.1,
|
47 |
+
"do_stable_layer_norm": true,
|
48 |
+
"eos_token_id": 2,
|
49 |
+
"feat_extract_activation": "gelu",
|
50 |
+
"feat_extract_dropout": 0.0,
|
51 |
+
"feat_extract_norm": "layer",
|
52 |
+
"feat_proj_dropout": 0.0,
|
53 |
+
"feat_quantizer_dropout": 0.0,
|
54 |
+
"final_dropout": 0.0,
|
55 |
+
"hidden_act": "gelu",
|
56 |
+
"hidden_dropout": 0.0,
|
57 |
+
"hidden_size": 1024,
|
58 |
+
"initializer_range": 0.02,
|
59 |
+
"intermediate_size": 4096,
|
60 |
+
"layer_norm_eps": 1e-05,
|
61 |
+
"layerdrop": 0.0,
|
62 |
+
"mask_feature_length": 64,
|
63 |
+
"mask_feature_min_masks": 0,
|
64 |
+
"mask_feature_prob": 0.25,
|
65 |
+
"mask_time_length": 10,
|
66 |
+
"mask_time_min_masks": 2,
|
67 |
+
"mask_time_prob": 0.75,
|
68 |
+
"model_type": "wav2vec2",
|
69 |
+
"num_adapter_layers": 3,
|
70 |
+
"num_attention_heads": 16,
|
71 |
+
"num_codevector_groups": 2,
|
72 |
+
"num_codevectors_per_group": 320,
|
73 |
+
"num_conv_pos_embedding_groups": 16,
|
74 |
+
"num_conv_pos_embeddings": 128,
|
75 |
+
"num_feat_extract_layers": 7,
|
76 |
+
"num_hidden_layers": 24,
|
77 |
+
"num_negatives": 100,
|
78 |
+
"output_hidden_size": 1024,
|
79 |
+
"pad_token_id": 29,
|
80 |
+
"proj_codevector_dim": 768,
|
81 |
+
"tdnn_dilation": [
|
82 |
+
1,
|
83 |
+
2,
|
84 |
+
3,
|
85 |
+
1,
|
86 |
+
1
|
87 |
+
],
|
88 |
+
"tdnn_dim": [
|
89 |
+
512,
|
90 |
+
512,
|
91 |
+
512,
|
92 |
+
512,
|
93 |
+
1500
|
94 |
+
],
|
95 |
+
"tdnn_kernel": [
|
96 |
+
5,
|
97 |
+
3,
|
98 |
+
3,
|
99 |
+
1,
|
100 |
+
1
|
101 |
+
],
|
102 |
+
"torch_dtype": "float32",
|
103 |
+
"transformers_version": "4.17.0.dev0",
|
104 |
+
"use_weighted_layer_sum": false,
|
105 |
+
"vocab_size": 32,
|
106 |
+
"xvector_output_dim": 512
|
107 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0.0,
|
7 |
+
"return_attention_mask": true,
|
8 |
+
"sampling_rate": 16000
|
9 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31ddb630e651b5670137ac169c70f3befd37058b7e77c57183510edbf5c313f9
|
3 |
+
size 1262054897
|
run_train.py
ADDED
@@ -0,0 +1,981 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# !/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
import functools
|
4 |
+
import json
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import re
|
8 |
+
import sys
|
9 |
+
import warnings
|
10 |
+
from dataclasses import dataclass, field
|
11 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
12 |
+
|
13 |
+
import datasets
|
14 |
+
import numpy as np
|
15 |
+
import torch
|
16 |
+
import torchaudio
|
17 |
+
from datasets import DatasetDict, ReadInstruction, load_dataset, load_metric, concatenate_datasets
|
18 |
+
|
19 |
+
try:
|
20 |
+
import bitsandbytes as bnb
|
21 |
+
|
22 |
+
BNB_AVAILABLE = True
|
23 |
+
except:
|
24 |
+
BNB_AVAILABLE = False
|
25 |
+
try:
|
26 |
+
import wandb
|
27 |
+
|
28 |
+
WANDB_AVAILABLE = True
|
29 |
+
except:
|
30 |
+
WANDB_AVAILABLE = False
|
31 |
+
import transformers
|
32 |
+
from transformers import (
|
33 |
+
AutoConfig,
|
34 |
+
AutoFeatureExtractor,
|
35 |
+
AutoModelForCTC,
|
36 |
+
AutoTokenizer,
|
37 |
+
HfArgumentParser,
|
38 |
+
Trainer,
|
39 |
+
TrainerCallback, TrainingArguments,
|
40 |
+
Wav2Vec2Processor,
|
41 |
+
set_seed,
|
42 |
+
)
|
43 |
+
|
44 |
+
try:
|
45 |
+
from torch_audiomentations import (
|
46 |
+
Compose,
|
47 |
+
AddGaussianNoise,
|
48 |
+
AddGaussianSNR,
|
49 |
+
ClippingDistortion,
|
50 |
+
FrequencyMask,
|
51 |
+
Gain,
|
52 |
+
LoudnessNormalization,
|
53 |
+
Normalize,
|
54 |
+
PitchShift,
|
55 |
+
PolarityInversion,
|
56 |
+
Shift,
|
57 |
+
TimeMask,
|
58 |
+
TimeStretch,
|
59 |
+
)
|
60 |
+
|
61 |
+
AUDIOMENTATIONS_AVAILABLE = True
|
62 |
+
except:
|
63 |
+
AUDIOMENTATIONS_AVAILABLE = False
|
64 |
+
try:
|
65 |
+
from transformers import AutoProcessor
|
66 |
+
except:
|
67 |
+
pass
|
68 |
+
from transformers.trainer_pt_utils import get_parameter_names
|
69 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
70 |
+
from transformers.utils import check_min_version
|
71 |
+
from transformers.utils.versions import require_version
|
72 |
+
|
73 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
74 |
+
check_min_version("4.16.0")
|
75 |
+
|
76 |
+
require_version(
|
77 |
+
"datasets>=1.13.3",
|
78 |
+
"To fix: pip install -r examples/pytorch/text-classification/requirements.txt",
|
79 |
+
)
|
80 |
+
|
81 |
+
logger = logging.getLogger(__name__)
|
82 |
+
|
83 |
+
|
84 |
+
def list_field(default=None, metadata=None):
|
85 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
86 |
+
|
87 |
+
|
88 |
+
@dataclass
|
89 |
+
class ModelArguments:
|
90 |
+
"""
|
91 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
92 |
+
"""
|
93 |
+
|
94 |
+
model_name_or_path: str = field(
|
95 |
+
metadata={
|
96 |
+
"help": "Path to pretrained model or model identifier from huggingface.co/models"
|
97 |
+
}
|
98 |
+
)
|
99 |
+
tokenizer_name_or_path: Optional[str] = field(
|
100 |
+
default=None,
|
101 |
+
metadata={
|
102 |
+
"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"
|
103 |
+
},
|
104 |
+
)
|
105 |
+
cache_dir: Optional[str] = field(
|
106 |
+
default=None,
|
107 |
+
metadata={
|
108 |
+
"help": "Where do you want to store the pretrained models downloaded from huggingface.co"
|
109 |
+
},
|
110 |
+
)
|
111 |
+
freeze_feature_encoder: bool = field(
|
112 |
+
default=True,
|
113 |
+
metadata={"help": "Whether to freeze the feature encoder layers of the model."},
|
114 |
+
)
|
115 |
+
attention_dropout: float = field(
|
116 |
+
default=0.0,
|
117 |
+
metadata={"help": "The dropout ratio for the attention probabilities."},
|
118 |
+
)
|
119 |
+
activation_dropout: float = field(
|
120 |
+
default=0.0,
|
121 |
+
metadata={
|
122 |
+
"help": "The dropout ratio for activations inside the fully connected layer."
|
123 |
+
},
|
124 |
+
)
|
125 |
+
feat_proj_dropout: float = field(
|
126 |
+
default=0.0, metadata={"help": "The dropout ratio for the projected features."}
|
127 |
+
)
|
128 |
+
hidden_dropout: float = field(
|
129 |
+
default=0.0,
|
130 |
+
metadata={
|
131 |
+
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
132 |
+
},
|
133 |
+
)
|
134 |
+
final_dropout: float = field(
|
135 |
+
default=0.0,
|
136 |
+
metadata={"help": "The dropout probability for the final projection layer."},
|
137 |
+
)
|
138 |
+
mask_time_prob: float = field(
|
139 |
+
default=0.05,
|
140 |
+
metadata={
|
141 |
+
"help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
|
142 |
+
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
|
143 |
+
"vectors will be masked along the time axis."
|
144 |
+
},
|
145 |
+
)
|
146 |
+
mask_time_length: int = field(
|
147 |
+
default=10,
|
148 |
+
metadata={"help": "Length of vector span to mask along the time axis."},
|
149 |
+
)
|
150 |
+
mask_feature_prob: float = field(
|
151 |
+
default=0.0,
|
152 |
+
metadata={
|
153 |
+
"help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
|
154 |
+
"span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
|
155 |
+
},
|
156 |
+
)
|
157 |
+
mask_feature_length: int = field(
|
158 |
+
default=10,
|
159 |
+
metadata={"help": "Length of vector span to mask along the feature axis."},
|
160 |
+
)
|
161 |
+
layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
|
162 |
+
ctc_loss_reduction: Optional[str] = field(
|
163 |
+
default="mean",
|
164 |
+
metadata={
|
165 |
+
"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."
|
166 |
+
},
|
167 |
+
)
|
168 |
+
|
169 |
+
|
170 |
+
@dataclass
|
171 |
+
class DataTrainingArguments:
|
172 |
+
"""
|
173 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
174 |
+
|
175 |
+
Using `HfArgumentParser` we can turn this class
|
176 |
+
into argparse arguments to be able to specify them on
|
177 |
+
the command line.
|
178 |
+
"""
|
179 |
+
|
180 |
+
dataset_path: str = field(
|
181 |
+
default=None,
|
182 |
+
metadata={
|
183 |
+
"help": "The configuration name of the dataset to use (via the datasets library)."
|
184 |
+
}
|
185 |
+
)
|
186 |
+
dataset_name: str = field(
|
187 |
+
default=None,
|
188 |
+
metadata={
|
189 |
+
"help": "The configuration name of the dataset to use (via the datasets library)."
|
190 |
+
},
|
191 |
+
)
|
192 |
+
dataset_config_name: str = field(
|
193 |
+
default=None,
|
194 |
+
metadata={
|
195 |
+
"help": "The configuration name of the dataset to use (via the datasets library)."
|
196 |
+
},
|
197 |
+
)
|
198 |
+
train_split_name: str = field(
|
199 |
+
default="train",
|
200 |
+
metadata={
|
201 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
202 |
+
},
|
203 |
+
)
|
204 |
+
eval_split_name: str = field(
|
205 |
+
default="validation",
|
206 |
+
metadata={
|
207 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
208 |
+
},
|
209 |
+
)
|
210 |
+
audio_column_name: str = field(
|
211 |
+
default="audio",
|
212 |
+
metadata={
|
213 |
+
"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"
|
214 |
+
},
|
215 |
+
)
|
216 |
+
text_column_name: str = field(
|
217 |
+
default="text",
|
218 |
+
metadata={
|
219 |
+
"help": "The name of the dataset column containing the text data. Defaults to 'text'"
|
220 |
+
},
|
221 |
+
)
|
222 |
+
wav_filesize_column_name: str = field(
|
223 |
+
default=None,
|
224 |
+
metadata={
|
225 |
+
"help": "The name of the dataset column containing the wav filesize. Defaults is None"
|
226 |
+
},
|
227 |
+
)
|
228 |
+
overwrite_cache: bool = field(
|
229 |
+
default=False,
|
230 |
+
metadata={"help": "Overwrite the cached preprocessed datasets or not."},
|
231 |
+
)
|
232 |
+
preprocessing_num_workers: Optional[int] = field(
|
233 |
+
default=None,
|
234 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
235 |
+
)
|
236 |
+
max_train_samples: Optional[int] = field(
|
237 |
+
default=None,
|
238 |
+
metadata={
|
239 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
240 |
+
"value if set."
|
241 |
+
},
|
242 |
+
)
|
243 |
+
max_eval_samples: Optional[int] = field(
|
244 |
+
default=None,
|
245 |
+
metadata={
|
246 |
+
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
|
247 |
+
"value if set."
|
248 |
+
},
|
249 |
+
)
|
250 |
+
chars_to_ignore: Optional[List[str]] = list_field(
|
251 |
+
default=None,
|
252 |
+
metadata={"help": "A list of characters to remove from the transcripts."},
|
253 |
+
)
|
254 |
+
eval_metrics: List[str] = list_field(
|
255 |
+
default=["wer"],
|
256 |
+
metadata={
|
257 |
+
"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"
|
258 |
+
},
|
259 |
+
)
|
260 |
+
max_duration_in_seconds: float = field(
|
261 |
+
default=20.0,
|
262 |
+
metadata={
|
263 |
+
"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
264 |
+
},
|
265 |
+
)
|
266 |
+
min_duration_in_seconds: float = field(
|
267 |
+
default=0.0,
|
268 |
+
metadata={
|
269 |
+
"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"
|
270 |
+
},
|
271 |
+
)
|
272 |
+
preprocessing_only: bool = field(
|
273 |
+
default=False,
|
274 |
+
metadata={
|
275 |
+
"help": "Whether to only do data preprocessing and skip training. "
|
276 |
+
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
|
277 |
+
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
|
278 |
+
"so that the cached datasets can consequently be loaded in distributed training"
|
279 |
+
},
|
280 |
+
)
|
281 |
+
print_samples: bool = field(
|
282 |
+
default=False,
|
283 |
+
metadata={
|
284 |
+
"help": "Print row with validation inference results to stdout after each epoch"
|
285 |
+
},
|
286 |
+
)
|
287 |
+
use_augmentations: bool = field(
|
288 |
+
default=False,
|
289 |
+
metadata={
|
290 |
+
"help": "Use data augmentation during training"
|
291 |
+
},
|
292 |
+
)
|
293 |
+
use_auth_token: str = field(
|
294 |
+
default="",
|
295 |
+
metadata={
|
296 |
+
"help": "If :obj:`True`, will use the token generated when running"
|
297 |
+
":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
|
298 |
+
},
|
299 |
+
)
|
300 |
+
unk_token: str = field(
|
301 |
+
default="[UNK]",
|
302 |
+
metadata={"help": "The unk token for the tokenizer"},
|
303 |
+
)
|
304 |
+
pad_token: str = field(
|
305 |
+
default="[PAD]",
|
306 |
+
metadata={"help": "The padding token for the tokenizer"},
|
307 |
+
)
|
308 |
+
word_delimiter_token: str = field(
|
309 |
+
default="|",
|
310 |
+
metadata={"help": "The word delimiter token for the tokenizer"},
|
311 |
+
)
|
312 |
+
phoneme_language: Optional[str] = field(
|
313 |
+
default=None,
|
314 |
+
metadata={
|
315 |
+
"help": "The target language that should be used be"
|
316 |
+
" passed to the tokenizer for tokenization. Note that"
|
317 |
+
" this is only relevant if the model classifies the"
|
318 |
+
" input audio to a sequence of phoneme sequences."
|
319 |
+
},
|
320 |
+
)
|
321 |
+
|
322 |
+
|
323 |
+
class Augmentator:
|
324 |
+
|
325 |
+
def __init__(
|
326 |
+
self,
|
327 |
+
apply_gaussian_noise_with_p=0.1,
|
328 |
+
apply_gain_with_p=0.1,
|
329 |
+
apply_pitch_shift_with_p=0.1,
|
330 |
+
apply_time_stretch_with_p=0.1,
|
331 |
+
augment_proba=0.1,
|
332 |
+
sample_rate=16_000
|
333 |
+
):
|
334 |
+
self.augmentator_fn = None
|
335 |
+
self.sample_rate = sample_rate
|
336 |
+
self.augment_proba = augment_proba
|
337 |
+
all_p = (
|
338 |
+
apply_gaussian_noise_with_p
|
339 |
+
+ apply_gain_with_p
|
340 |
+
+ apply_pitch_shift_with_p
|
341 |
+
+ apply_time_stretch_with_p
|
342 |
+
)
|
343 |
+
if AUDIOMENTATIONS_AVAILABLE and all_p > 0:
|
344 |
+
self.augmentator_fn = Compose([
|
345 |
+
TimeStretch(min_rate=0.8, max_rate=1.2, leave_length_unchanged=False,
|
346 |
+
p=apply_time_stretch_with_p),
|
347 |
+
PitchShift(min_semitones=-1, max_semitones=1,
|
348 |
+
p=apply_pitch_shift_with_p),
|
349 |
+
Gain(min_gain_in_db=-1, max_gain_in_db=1, p=apply_gain_with_p),
|
350 |
+
AddGaussianNoise(min_amplitude=0.0001, max_amplitude=0.001,
|
351 |
+
p=apply_gaussian_noise_with_p),
|
352 |
+
])
|
353 |
+
|
354 |
+
def __call__(self, input_values: List[float], *args, **kwargs):
|
355 |
+
if AUDIOMENTATIONS_AVAILABLE and self.augmentator_fn is not None:
|
356 |
+
return self.augmentator_fn(samples=np.array(input_values),
|
357 |
+
sample_rate=self.sample_rate).tolist()
|
358 |
+
else:
|
359 |
+
return input_values
|
360 |
+
|
361 |
+
|
362 |
+
@dataclass
|
363 |
+
class DataCollatorCTCWithPadding:
|
364 |
+
"""
|
365 |
+
Data collator that will dynamically pad the inputs received.
|
366 |
+
Args:
|
367 |
+
processor (:class:`~transformers.AutoProcessor`)
|
368 |
+
The processor used for proccessing the data.
|
369 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
370 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
371 |
+
among:
|
372 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
373 |
+
sequence if provided).
|
374 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
375 |
+
maximum acceptable input length for the model if that argument is not provided.
|
376 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
377 |
+
different lengths).
|
378 |
+
max_length (:obj:`int`, `optional`):
|
379 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
380 |
+
max_length_labels (:obj:`int`, `optional`):
|
381 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
382 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
383 |
+
If set will pad the sequence to a multiple of the provided value.
|
384 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
385 |
+
7.5 (Volta).
|
386 |
+
"""
|
387 |
+
|
388 |
+
processor: 'AutoProcessor'
|
389 |
+
padding: Union[bool, str] = "longest"
|
390 |
+
pad_to_multiple_of: Optional[int] = None
|
391 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
392 |
+
augmentator_fn: Optional[Callable] = None
|
393 |
+
use_augmentations: bool = False
|
394 |
+
|
395 |
+
def __call__(
|
396 |
+
self, features: List[Dict[str, Union[List[int], torch.Tensor]]]
|
397 |
+
) -> Dict[str, torch.Tensor]:
|
398 |
+
# split inputs and labels since they have to be of different lenghts and need
|
399 |
+
# different padding methods
|
400 |
+
input_features = [
|
401 |
+
{
|
402 |
+
"input_values": self.augmentator_fn(feature["input_values"])
|
403 |
+
if self.use_augmentations
|
404 |
+
else feature["input_values"]}
|
405 |
+
for feature in features
|
406 |
+
]
|
407 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
408 |
+
|
409 |
+
batch = self.processor.pad(
|
410 |
+
input_features,
|
411 |
+
padding=self.padding,
|
412 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
413 |
+
return_tensors="pt",
|
414 |
+
)
|
415 |
+
|
416 |
+
with self.processor.as_target_processor():
|
417 |
+
labels_batch = self.processor.pad(
|
418 |
+
label_features,
|
419 |
+
padding=self.padding,
|
420 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
421 |
+
return_tensors="pt",
|
422 |
+
)
|
423 |
+
|
424 |
+
# replace padding with -100 to ignore loss correctly
|
425 |
+
labels = labels_batch["input_ids"].masked_fill(
|
426 |
+
labels_batch.attention_mask.ne(1), -100
|
427 |
+
)
|
428 |
+
|
429 |
+
batch["labels"] = labels
|
430 |
+
|
431 |
+
return batch
|
432 |
+
|
433 |
+
|
434 |
+
def create_vocabulary_from_data(
|
435 |
+
datasets: DatasetDict,
|
436 |
+
text_column_name: str,
|
437 |
+
train_split_name: str,
|
438 |
+
word_delimiter_token: Optional[str] = None,
|
439 |
+
unk_token: Optional[str] = None,
|
440 |
+
pad_token: Optional[str] = None,
|
441 |
+
):
|
442 |
+
# Given training and test labels create vocabulary
|
443 |
+
def extract_all_chars(batch):
|
444 |
+
all_text = " ".join(batch[text_column_name])
|
445 |
+
vocab = list(set(all_text))
|
446 |
+
return {"vocab": [vocab], "all_text": [all_text]}
|
447 |
+
|
448 |
+
print("extract chars")
|
449 |
+
vocabs = datasets.map(
|
450 |
+
extract_all_chars,
|
451 |
+
batched=True,
|
452 |
+
batch_size=-1,
|
453 |
+
keep_in_memory=True,
|
454 |
+
remove_columns=datasets[train_split_name].column_names,
|
455 |
+
)
|
456 |
+
|
457 |
+
# take union of all unique characters in each dataset
|
458 |
+
print("make vocab_set")
|
459 |
+
vocab_set = functools.reduce(
|
460 |
+
lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]),
|
461 |
+
vocabs.values(),
|
462 |
+
)
|
463 |
+
|
464 |
+
vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
|
465 |
+
|
466 |
+
# replace white space with delimiter token
|
467 |
+
if word_delimiter_token is not None:
|
468 |
+
vocab_dict[word_delimiter_token] = vocab_dict[" "]
|
469 |
+
del vocab_dict[" "]
|
470 |
+
|
471 |
+
# add unk and pad token
|
472 |
+
if unk_token is not None:
|
473 |
+
vocab_dict[unk_token] = len(vocab_dict)
|
474 |
+
|
475 |
+
if pad_token is not None:
|
476 |
+
vocab_dict[pad_token] = len(vocab_dict)
|
477 |
+
|
478 |
+
return vocab_dict
|
479 |
+
|
480 |
+
|
481 |
+
def speech_file_to_array_fn(batch, audio_column_name, dataset_path=""):
|
482 |
+
if dataset_path:
|
483 |
+
dataset_path = os.path.join(dataset_path, batch[audio_column_name])
|
484 |
+
else:
|
485 |
+
dataset_path = batch[audio_column_name] if isinstance(batch[audio_column_name],
|
486 |
+
str) else \
|
487 |
+
batch[audio_column_name]["path"]
|
488 |
+
speech_array, sampling_rate = torchaudio.load(dataset_path)
|
489 |
+
batch[audio_column_name] = {
|
490 |
+
"array": speech_array[0].numpy(),
|
491 |
+
"sampling_rate": sampling_rate,
|
492 |
+
}
|
493 |
+
return batch
|
494 |
+
|
495 |
+
|
496 |
+
class PrintSamplesPredictionCallback(TrainerCallback):
|
497 |
+
|
498 |
+
def __init__(self, processor, eval_dataset):
|
499 |
+
super(PrintSamplesPredictionCallback, self).__init__()
|
500 |
+
self.processor = processor
|
501 |
+
self.eval_dataset = eval_dataset
|
502 |
+
self.metric_fn = load_metric("wer")
|
503 |
+
|
504 |
+
def on_log(
|
505 |
+
self,
|
506 |
+
args: Any,
|
507 |
+
state: Any,
|
508 |
+
control: Any,
|
509 |
+
model: Any,
|
510 |
+
logs: Optional[Any] = None,
|
511 |
+
**kwargs
|
512 |
+
):
|
513 |
+
"""
|
514 |
+
:param args:
|
515 |
+
:param state:
|
516 |
+
:param control:
|
517 |
+
:param model:
|
518 |
+
:param logs:
|
519 |
+
:param kwargs: 'tokenizer', 'optimizer', 'lr_scheduler', 'train_dataloader', 'eval_dataloader'
|
520 |
+
:return:
|
521 |
+
"""
|
522 |
+
if state.is_local_process_zero:
|
523 |
+
columns = ["id", "prediction", "reference", "audio", "wer"]
|
524 |
+
data = []
|
525 |
+
for idx, row in enumerate(self.eval_dataset):
|
526 |
+
input_dict = self.processor(row["input_values"],
|
527 |
+
return_tensors="pt", padding=True)
|
528 |
+
logits = model(input_dict.input_values.to(model.device)).logits
|
529 |
+
pred_ids = torch.argmax(logits, dim=-1)[0]
|
530 |
+
prediction = self.processor.decode(pred_ids)
|
531 |
+
print(f"Prediction: {prediction}")
|
532 |
+
reference = row['references'].lower()
|
533 |
+
print(f"\nReference: {reference}")
|
534 |
+
|
535 |
+
if WANDB_AVAILABLE:
|
536 |
+
|
537 |
+
audio, sample_rate = tuple(row["audio"].values())
|
538 |
+
audio = wandb.Audio(np.squeeze(audio),
|
539 |
+
sample_rate=sample_rate)
|
540 |
+
wer = self.metric_fn.compute(
|
541 |
+
predictions=[prediction],
|
542 |
+
references=[reference],
|
543 |
+
)
|
544 |
+
|
545 |
+
data.append([idx, prediction, reference, audio, wer])
|
546 |
+
if WANDB_AVAILABLE:
|
547 |
+
table = wandb.Table(data=data, columns=columns)
|
548 |
+
wandb.run.log({"audio_predictions": table})
|
549 |
+
|
550 |
+
|
551 |
+
def main():
|
552 |
+
# See all possible arguments in src/transformers/training_args.py
|
553 |
+
# or by passing the --help flag to this script.
|
554 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
555 |
+
|
556 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
557 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
558 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
559 |
+
# let's parse it to get our arguments.
|
560 |
+
model_args, data_args, training_args = parser.parse_json_file(
|
561 |
+
json_file=os.path.abspath(sys.argv[1])
|
562 |
+
)
|
563 |
+
else:
|
564 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
565 |
+
|
566 |
+
# Detecting last checkpoint.
|
567 |
+
last_checkpoint = None
|
568 |
+
if (
|
569 |
+
os.path.isdir(training_args.output_dir)
|
570 |
+
and training_args.do_train
|
571 |
+
and not training_args.overwrite_output_dir
|
572 |
+
):
|
573 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
574 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
575 |
+
raise ValueError(
|
576 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
577 |
+
"Use --overwrite_output_dir to overcome."
|
578 |
+
)
|
579 |
+
elif last_checkpoint is not None:
|
580 |
+
logger.info(
|
581 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
582 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
583 |
+
)
|
584 |
+
|
585 |
+
# Setup logging
|
586 |
+
logging.basicConfig(
|
587 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
588 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
589 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
590 |
+
)
|
591 |
+
logger.setLevel(
|
592 |
+
logging.INFO if is_main_process(training_args.local_rank) else logging.WARN
|
593 |
+
)
|
594 |
+
|
595 |
+
# Log on each process the small summary:
|
596 |
+
logger.warning(
|
597 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
598 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
599 |
+
)
|
600 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
601 |
+
if is_main_process(training_args.local_rank):
|
602 |
+
transformers.utils.logging.set_verbosity_info()
|
603 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
604 |
+
|
605 |
+
# Set seed before initializing model.
|
606 |
+
set_seed(training_args.seed)
|
607 |
+
|
608 |
+
train_split_name = data_args.train_split_name
|
609 |
+
eval_split_name = data_args.eval_split_name
|
610 |
+
|
611 |
+
# 1. First, let's load the dataset
|
612 |
+
raw_datasets = DatasetDict({
|
613 |
+
train_split_name: None,
|
614 |
+
eval_split_name: None,
|
615 |
+
})
|
616 |
+
|
617 |
+
if data_args.dataset_path:
|
618 |
+
raw_datasets = load_dataset(
|
619 |
+
"csv",
|
620 |
+
data_files={
|
621 |
+
train_split_name: os.path.join(data_args.dataset_path, "train-all.csv"),
|
622 |
+
eval_split_name: os.path.join(data_args.dataset_path, "eval-all.csv"),
|
623 |
+
},
|
624 |
+
)
|
625 |
+
|
626 |
+
if training_args.do_train:
|
627 |
+
if raw_datasets[train_split_name] is None:
|
628 |
+
raw_datasets[train_split_name] = load_dataset(
|
629 |
+
data_args.dataset_name,
|
630 |
+
data_args.dataset_config_name,
|
631 |
+
split=data_args.train_split_name,
|
632 |
+
use_auth_token=data_args.use_auth_token,
|
633 |
+
)
|
634 |
+
|
635 |
+
if data_args.audio_column_name not in raw_datasets[train_split_name].column_names:
|
636 |
+
raise ValueError(
|
637 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset. "
|
638 |
+
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
639 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
640 |
+
)
|
641 |
+
|
642 |
+
if data_args.text_column_name not in raw_datasets[train_split_name].column_names:
|
643 |
+
raise ValueError(
|
644 |
+
f"--text_column_name {data_args.text_column_name} not found in dataset. "
|
645 |
+
"Make sure to set `--text_column_name` to the correct text column - one of "
|
646 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
647 |
+
)
|
648 |
+
|
649 |
+
if data_args.max_train_samples is not None:
|
650 |
+
raw_datasets[train_split_name] = raw_datasets[train_split_name].select(
|
651 |
+
range(data_args.max_train_samples)
|
652 |
+
)
|
653 |
+
|
654 |
+
if data_args.wav_filesize_column_name is not None:
|
655 |
+
raw_datasets[train_split_name] = raw_datasets[train_split_name].sort(
|
656 |
+
data_args.wav_filesize_column_name, reverse=True)
|
657 |
+
|
658 |
+
if training_args.do_eval:
|
659 |
+
if raw_datasets[eval_split_name] is None:
|
660 |
+
raw_datasets[eval_split_name] = load_dataset(
|
661 |
+
data_args.dataset_name,
|
662 |
+
data_args.dataset_config_name,
|
663 |
+
split=data_args.eval_split_name,
|
664 |
+
use_auth_token=data_args.use_auth_token,
|
665 |
+
)
|
666 |
+
|
667 |
+
if data_args.max_eval_samples is not None:
|
668 |
+
raw_datasets[eval_split_name] = raw_datasets[eval_split_name].select(
|
669 |
+
range(data_args.max_eval_samples)
|
670 |
+
)
|
671 |
+
if data_args.wav_filesize_column_name is not None:
|
672 |
+
raw_datasets[eval_split_name] = raw_datasets[eval_split_name].sort(
|
673 |
+
data_args.wav_filesize_column_name, reverse=True)
|
674 |
+
|
675 |
+
# save special tokens for tokenizer
|
676 |
+
word_delimiter_token = data_args.word_delimiter_token
|
677 |
+
unk_token = data_args.unk_token
|
678 |
+
pad_token = data_args.pad_token
|
679 |
+
|
680 |
+
# 3. Next, let's load the config as we might need it to create
|
681 |
+
# the tokenizer
|
682 |
+
# load config
|
683 |
+
config = AutoConfig.from_pretrained(
|
684 |
+
model_args.model_name_or_path,
|
685 |
+
cache_dir=model_args.cache_dir,
|
686 |
+
use_auth_token=data_args.use_auth_token,
|
687 |
+
)
|
688 |
+
|
689 |
+
# 4. Next, if no tokenizer file is defined,
|
690 |
+
# we create the vocabulary of the model by extracting all unique characters from
|
691 |
+
# the training and evaluation datasets
|
692 |
+
# We need to make sure that only first rank saves vocabulary
|
693 |
+
# make sure all processes wait until vocab is created
|
694 |
+
tokenizer_name_or_path = model_args.tokenizer_name_or_path
|
695 |
+
tokenizer_kwargs = {}
|
696 |
+
|
697 |
+
# 5. Now we can instantiate the feature extractor, tokenizer and model
|
698 |
+
# Note for distributed training, the .from_pretrained methods guarantee that only
|
699 |
+
# one local process can concurrently download model & vocab.
|
700 |
+
with open(os.path.join(tokenizer_name_or_path, "vocab.json"), "r") as fin:
|
701 |
+
print("loading tokenizer")
|
702 |
+
print(fin.read())
|
703 |
+
|
704 |
+
# load feature_extractor and tokenizer
|
705 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
706 |
+
tokenizer_name_or_path,
|
707 |
+
use_auth_token=data_args.use_auth_token,
|
708 |
+
**tokenizer_kwargs,
|
709 |
+
)
|
710 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
711 |
+
model_args.model_name_or_path,
|
712 |
+
cache_dir=model_args.cache_dir,
|
713 |
+
use_auth_token=data_args.use_auth_token,
|
714 |
+
)
|
715 |
+
|
716 |
+
# adapt config
|
717 |
+
config.update(
|
718 |
+
{
|
719 |
+
"feat_proj_dropout": model_args.feat_proj_dropout,
|
720 |
+
"attention_dropout": model_args.attention_dropout,
|
721 |
+
"hidden_dropout": model_args.hidden_dropout,
|
722 |
+
"final_dropout": model_args.final_dropout,
|
723 |
+
"mask_time_prob": model_args.mask_time_prob,
|
724 |
+
"mask_time_length": model_args.mask_time_length,
|
725 |
+
"mask_feature_prob": model_args.mask_feature_prob,
|
726 |
+
"mask_feature_length": model_args.mask_feature_length,
|
727 |
+
"gradient_checkpointing": training_args.gradient_checkpointing,
|
728 |
+
"layerdrop": model_args.layerdrop,
|
729 |
+
"ctc_loss_reduction": model_args.ctc_loss_reduction,
|
730 |
+
"pad_token_id": tokenizer.pad_token_id,
|
731 |
+
"vocab_size": len(tokenizer),
|
732 |
+
"activation_dropout": model_args.activation_dropout,
|
733 |
+
}
|
734 |
+
)
|
735 |
+
|
736 |
+
# create model
|
737 |
+
model = AutoModelForCTC.from_pretrained(
|
738 |
+
model_args.model_name_or_path,
|
739 |
+
cache_dir=model_args.cache_dir,
|
740 |
+
config=config,
|
741 |
+
use_auth_token=data_args.use_auth_token,
|
742 |
+
)
|
743 |
+
|
744 |
+
# freeze encoder
|
745 |
+
if model_args.freeze_feature_encoder:
|
746 |
+
model.freeze_feature_encoder()
|
747 |
+
|
748 |
+
# 6. Now we preprocess the datasets including loading the audio, resampling and normalization
|
749 |
+
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
|
750 |
+
# so that we just need to set the correct target sampling rate and normalize the input
|
751 |
+
# via the `feature_extractor`
|
752 |
+
|
753 |
+
# make sure that dataset decodes audio with correct sampling rate
|
754 |
+
|
755 |
+
# derive max & min input length for sample rate & max duration
|
756 |
+
audio_column_name = data_args.audio_column_name
|
757 |
+
num_workers = data_args.preprocessing_num_workers
|
758 |
+
|
759 |
+
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
|
760 |
+
phoneme_language = data_args.phoneme_language
|
761 |
+
|
762 |
+
raw_datasets[train_split_name] = raw_datasets[train_split_name].map(
|
763 |
+
speech_file_to_array_fn,
|
764 |
+
num_proc=num_workers,
|
765 |
+
fn_kwargs={"dataset_path": data_args.dataset_path,
|
766 |
+
"audio_column_name": audio_column_name},
|
767 |
+
)
|
768 |
+
raw_datasets[eval_split_name] = raw_datasets[eval_split_name].map(
|
769 |
+
speech_file_to_array_fn,
|
770 |
+
num_proc=num_workers,
|
771 |
+
fn_kwargs={"dataset_path": data_args.dataset_path,
|
772 |
+
"audio_column_name": audio_column_name},
|
773 |
+
)
|
774 |
+
|
775 |
+
# Preprocessing the datasets.
|
776 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
777 |
+
def prepare_dataset(batch):
|
778 |
+
# load audio
|
779 |
+
sample = batch[audio_column_name]
|
780 |
+
|
781 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
782 |
+
batch["input_values"] = inputs.input_values[0]
|
783 |
+
batch["input_length"] = len(batch["input_values"])
|
784 |
+
|
785 |
+
# encode targets
|
786 |
+
additional_kwargs = {}
|
787 |
+
if phoneme_language is not None:
|
788 |
+
additional_kwargs["phonemizer_lang"] = phoneme_language
|
789 |
+
|
790 |
+
batch["labels"] = tokenizer(batch[data_args.text_column_name],
|
791 |
+
**additional_kwargs).input_ids
|
792 |
+
return batch
|
793 |
+
|
794 |
+
print(f"Vectorizing")
|
795 |
+
|
796 |
+
with training_args.main_process_first(desc="dataset map preprocessing"):
|
797 |
+
vectorized_datasets = raw_datasets.map(
|
798 |
+
prepare_dataset,
|
799 |
+
remove_columns=next(iter(raw_datasets.values())).column_names,
|
800 |
+
num_proc=num_workers,
|
801 |
+
desc="preprocess datasets",
|
802 |
+
)
|
803 |
+
|
804 |
+
# 7. Next, we can prepare the training.
|
805 |
+
# Let's use word error rate (WER) as our evaluation metric,
|
806 |
+
# instantiate a data collator and the trainer
|
807 |
+
|
808 |
+
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
|
809 |
+
eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
|
810 |
+
|
811 |
+
# for large datasets it is advised to run the preprocessing on a
|
812 |
+
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
813 |
+
# be a timeout when running the script in distributed mode.
|
814 |
+
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
|
815 |
+
# cached dataset
|
816 |
+
if data_args.preprocessing_only:
|
817 |
+
logger.info(
|
818 |
+
f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}"
|
819 |
+
)
|
820 |
+
return
|
821 |
+
|
822 |
+
def compute_metrics(pred):
|
823 |
+
pred_logits = pred.predictions
|
824 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
825 |
+
|
826 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
827 |
+
|
828 |
+
pred_str = tokenizer.batch_decode(pred_ids)
|
829 |
+
# we do not want to group tokens when computing the metrics
|
830 |
+
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
|
831 |
+
|
832 |
+
metrics = {
|
833 |
+
k: v.compute(predictions=pred_str, references=label_str)
|
834 |
+
for k, v in eval_metrics.items()
|
835 |
+
}
|
836 |
+
|
837 |
+
return metrics
|
838 |
+
|
839 |
+
# Now save everything to be able to create a single processor later
|
840 |
+
if is_main_process(training_args.local_rank):
|
841 |
+
# save feature extractor, tokenizer and config
|
842 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
843 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
844 |
+
config.save_pretrained(training_args.output_dir)
|
845 |
+
|
846 |
+
try:
|
847 |
+
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
848 |
+
except (OSError, KeyError):
|
849 |
+
warnings.warn(
|
850 |
+
"Loading a processor from a feature extractor config that does not"
|
851 |
+
" include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
|
852 |
+
" attribute to your `preprocessor_config.json` file to suppress this warning: "
|
853 |
+
" `'processor_class': 'Wav2Vec2Processor'`",
|
854 |
+
FutureWarning,
|
855 |
+
)
|
856 |
+
processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
|
857 |
+
|
858 |
+
# Instantiate custom data collator
|
859 |
+
data_collator = DataCollatorCTCWithPadding(
|
860 |
+
processor=processor,
|
861 |
+
augmentator_fn=Augmentator(),
|
862 |
+
use_augmentations=data_args.use_augmentations
|
863 |
+
)
|
864 |
+
|
865 |
+
decay_parameters = get_parameter_names(model, [torch.nn.LayerNorm])
|
866 |
+
decay_parameters = [name for name in decay_parameters if "bias" not in name]
|
867 |
+
optimizer_grouped_parameters = [
|
868 |
+
{
|
869 |
+
"params": [p for n, p in model.named_parameters() if n in decay_parameters],
|
870 |
+
"weight_decay": training_args.weight_decay,
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"params": [
|
874 |
+
p for n, p in model.named_parameters() if n not in decay_parameters
|
875 |
+
],
|
876 |
+
"weight_decay": 0.0,
|
877 |
+
},
|
878 |
+
]
|
879 |
+
trainer_kwargs = {}
|
880 |
+
if BNB_AVAILABLE:
|
881 |
+
optimizer = bnb.optim.Adam8bit(
|
882 |
+
params=optimizer_grouped_parameters,
|
883 |
+
betas=(training_args.adam_beta1, training_args.adam_beta2),
|
884 |
+
eps=training_args.adam_epsilon,
|
885 |
+
)
|
886 |
+
trainer_kwargs["optimizers"] = (optimizer, None)
|
887 |
+
|
888 |
+
samples_to_log = [
|
889 |
+
{
|
890 |
+
**vectorized_datasets[eval_split_name][i],
|
891 |
+
"references": raw_datasets[eval_split_name][i][data_args.text_column_name],
|
892 |
+
"audio": raw_datasets[eval_split_name][i][data_args.audio_column_name],
|
893 |
+
} for i in range(5)
|
894 |
+
]
|
895 |
+
|
896 |
+
trainer = Trainer(
|
897 |
+
model=model,
|
898 |
+
data_collator=data_collator,
|
899 |
+
args=training_args,
|
900 |
+
compute_metrics=compute_metrics,
|
901 |
+
train_dataset=vectorized_datasets[
|
902 |
+
train_split_name] if training_args.do_train else None,
|
903 |
+
eval_dataset=vectorized_datasets[
|
904 |
+
eval_split_name] if training_args.do_eval else None,
|
905 |
+
tokenizer=feature_extractor,
|
906 |
+
**trainer_kwargs,
|
907 |
+
callbacks=[PrintSamplesPredictionCallback(
|
908 |
+
processor=processor,
|
909 |
+
eval_dataset=samples_to_log)] if data_args.print_samples and training_args.do_eval else None,
|
910 |
+
)
|
911 |
+
|
912 |
+
# 8. Finally, we can start training
|
913 |
+
|
914 |
+
# Training
|
915 |
+
if training_args.do_train:
|
916 |
+
|
917 |
+
# use last checkpoint if exist
|
918 |
+
if last_checkpoint is not None:
|
919 |
+
checkpoint = last_checkpoint
|
920 |
+
elif os.path.isdir(model_args.model_name_or_path):
|
921 |
+
checkpoint = model_args.model_name_or_path
|
922 |
+
else:
|
923 |
+
checkpoint = None
|
924 |
+
|
925 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
926 |
+
trainer.save_model()
|
927 |
+
|
928 |
+
metrics = train_result.metrics
|
929 |
+
max_train_samples = (
|
930 |
+
data_args.max_train_samples
|
931 |
+
if data_args.max_train_samples is not None
|
932 |
+
else len(vectorized_datasets[train_split_name])
|
933 |
+
)
|
934 |
+
metrics["train_samples"] = min(
|
935 |
+
max_train_samples, len(vectorized_datasets[train_split_name])
|
936 |
+
)
|
937 |
+
|
938 |
+
trainer.log_metrics(train_split_name, metrics)
|
939 |
+
trainer.save_metrics(train_split_name, metrics)
|
940 |
+
trainer.save_state()
|
941 |
+
|
942 |
+
# Evaluation
|
943 |
+
results = {}
|
944 |
+
if training_args.do_eval:
|
945 |
+
logger.info("*** Evaluate ***")
|
946 |
+
metrics = trainer.evaluate()
|
947 |
+
max_eval_samples = (
|
948 |
+
data_args.max_eval_samples
|
949 |
+
if data_args.max_eval_samples is not None
|
950 |
+
else len(vectorized_datasets[eval_split_name])
|
951 |
+
)
|
952 |
+
metrics["eval_samples"] = min(max_eval_samples,
|
953 |
+
len(vectorized_datasets[eval_split_name]))
|
954 |
+
|
955 |
+
trainer.log_metrics(eval_split_name, metrics)
|
956 |
+
trainer.save_metrics(eval_split_name, metrics)
|
957 |
+
|
958 |
+
# Write model card and (optionally) push to hub
|
959 |
+
config_name = (
|
960 |
+
data_args.dataset_config_name
|
961 |
+
if data_args.dataset_config_name is not None
|
962 |
+
else "na"
|
963 |
+
)
|
964 |
+
kwargs = {
|
965 |
+
"language": "he",
|
966 |
+
"finetuned_from": model_args.model_name_or_path,
|
967 |
+
"tasks": "speech-recognition",
|
968 |
+
"tags": ["automatic-speech-recognition", "robust-speech-event", "he"],
|
969 |
+
"dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
|
970 |
+
}
|
971 |
+
|
972 |
+
if training_args.push_to_hub:
|
973 |
+
trainer.push_to_hub(**kwargs)
|
974 |
+
else:
|
975 |
+
trainer.create_model_card(**kwargs)
|
976 |
+
|
977 |
+
return results
|
978 |
+
|
979 |
+
|
980 |
+
if __name__ == "__main__":
|
981 |
+
main()
|
run_train.sh
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
export CUDA_VISIBLE_DEVICES="0,1"
|
2 |
+
|
3 |
+
python -m torch.distributed.launch --nproc_per_node=2 run_train.py \
|
4 |
+
--dataset_name="imvladikon/hebrew_speech_???" \
|
5 |
+
--use_auth_token="???" \
|
6 |
+
--audio_column_name="audio" \
|
7 |
+
--text_column_name="sentence" \
|
8 |
+
--model_name_or_path="imvladikon/wav2vec2-xls-r-300m-hebrew" \
|
9 |
+
--tokenizer_name_or_path="./wav2vec2-xls-r-300m-hebrew" \
|
10 |
+
--output_dir="./wav2vec2-xls-r-300m-hebrew" \
|
11 |
+
--overwrite_output_dir \
|
12 |
+
--evaluation_strategy="steps" \
|
13 |
+
--length_column_name="input_length" \
|
14 |
+
--gradient_checkpointing \
|
15 |
+
--fp16 \
|
16 |
+
--group_by_length \
|
17 |
+
--num_train_epochs="100" \
|
18 |
+
--per_device_train_batch_size="8" \
|
19 |
+
--per_device_eval_batch_size="8" \
|
20 |
+
--gradient_accumulation_steps="4" \
|
21 |
+
--learning_rate="3e-4" \
|
22 |
+
--warmup_steps="1000" \
|
23 |
+
--save_steps="1000" \
|
24 |
+
--eval_steps="1000" \
|
25 |
+
--preprocessing_num_workers="$(nproc)" \
|
26 |
+
--logging_steps="2000" \
|
27 |
+
--layerdrop="0.0" \
|
28 |
+
--activation_dropout="0.1" \
|
29 |
+
--save_total_limit="3" \
|
30 |
+
--freeze_feature_encoder \
|
31 |
+
--feat_proj_dropout="0.0" \
|
32 |
+
--mask_time_prob="0.75" \
|
33 |
+
--mask_time_length="10" \
|
34 |
+
--mask_feature_prob="0.25" \
|
35 |
+
--mask_feature_length="64" \
|
36 |
+
--do_train --do_eval \
|
37 |
+
--print_samples \
|
38 |
+
--use_augmentations \
|
39 |
+
--push_to_hub
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "./wav2vec2-xls-r-300m-hebrew", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 100.0,
|
3 |
+
"train_loss": 0.8928292760036721,
|
4 |
+
"train_runtime": 80759.6589,
|
5 |
+
"train_samples": 20306,
|
6 |
+
"train_samples_per_second": 25.144,
|
7 |
+
"train_steps_per_second": 0.393
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 99.99842519685039,
|
5 |
+
"global_step": 31700,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 3.15,
|
12 |
+
"eval_loss": 0.5203462243080139,
|
13 |
+
"eval_runtime": 141.5768,
|
14 |
+
"eval_samples_per_second": 35.853,
|
15 |
+
"eval_steps_per_second": 2.246,
|
16 |
+
"eval_wer": 0.4333326279704594,
|
17 |
+
"step": 1000
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 6.31,
|
21 |
+
"learning_rate": 0.0009674592833876221,
|
22 |
+
"loss": 1.4284,
|
23 |
+
"step": 2000
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 6.31,
|
27 |
+
"eval_loss": 0.48156219720840454,
|
28 |
+
"eval_runtime": 142.5636,
|
29 |
+
"eval_samples_per_second": 35.605,
|
30 |
+
"eval_steps_per_second": 2.231,
|
31 |
+
"eval_wer": 0.3950949065746873,
|
32 |
+
"step": 2000
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 9.46,
|
36 |
+
"eval_loss": 0.4314565062522888,
|
37 |
+
"eval_runtime": 139.8322,
|
38 |
+
"eval_samples_per_second": 36.301,
|
39 |
+
"eval_steps_per_second": 2.274,
|
40 |
+
"eval_wer": 0.3545506485811626,
|
41 |
+
"step": 3000
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"epoch": 12.62,
|
45 |
+
"learning_rate": 0.0009023452768729642,
|
46 |
+
"loss": 1.283,
|
47 |
+
"step": 4000
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"epoch": 12.62,
|
51 |
+
"eval_loss": 0.42783403396606445,
|
52 |
+
"eval_runtime": 141.0912,
|
53 |
+
"eval_samples_per_second": 35.977,
|
54 |
+
"eval_steps_per_second": 2.254,
|
55 |
+
"eval_wer": 0.34039401570137756,
|
56 |
+
"step": 4000
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 15.77,
|
60 |
+
"eval_loss": 0.40902915596961975,
|
61 |
+
"eval_runtime": 140.9561,
|
62 |
+
"eval_samples_per_second": 36.011,
|
63 |
+
"eval_steps_per_second": 2.256,
|
64 |
+
"eval_wer": 0.3053939098969465,
|
65 |
+
"step": 5000
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 18.93,
|
69 |
+
"learning_rate": 0.0008372312703583062,
|
70 |
+
"loss": 1.1777,
|
71 |
+
"step": 6000
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"epoch": 18.93,
|
75 |
+
"eval_loss": 0.3892641067504883,
|
76 |
+
"eval_runtime": 139.9163,
|
77 |
+
"eval_samples_per_second": 36.279,
|
78 |
+
"eval_steps_per_second": 2.273,
|
79 |
+
"eval_wer": 0.30056922783926193,
|
80 |
+
"step": 6000
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 22.08,
|
84 |
+
"eval_loss": 0.3967570960521698,
|
85 |
+
"eval_runtime": 139.2725,
|
86 |
+
"eval_samples_per_second": 36.447,
|
87 |
+
"eval_steps_per_second": 2.283,
|
88 |
+
"eval_wer": 0.28565080305563195,
|
89 |
+
"step": 7000
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 25.24,
|
93 |
+
"learning_rate": 0.0007720846905537459,
|
94 |
+
"loss": 1.0994,
|
95 |
+
"step": 8000
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"epoch": 25.24,
|
99 |
+
"eval_loss": 0.3892391324043274,
|
100 |
+
"eval_runtime": 138.7844,
|
101 |
+
"eval_samples_per_second": 36.575,
|
102 |
+
"eval_steps_per_second": 2.291,
|
103 |
+
"eval_wer": 0.27509152083289246,
|
104 |
+
"step": 8000
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 28.39,
|
108 |
+
"eval_loss": 0.4061281681060791,
|
109 |
+
"eval_runtime": 139.2312,
|
110 |
+
"eval_samples_per_second": 36.457,
|
111 |
+
"eval_steps_per_second": 2.284,
|
112 |
+
"eval_wer": 0.2689760247159151,
|
113 |
+
"step": 9000
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"epoch": 31.54,
|
117 |
+
"learning_rate": 0.000706970684039088,
|
118 |
+
"loss": 1.0323,
|
119 |
+
"step": 10000
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"epoch": 31.54,
|
123 |
+
"eval_loss": 0.41136494278907776,
|
124 |
+
"eval_runtime": 139.4432,
|
125 |
+
"eval_samples_per_second": 36.402,
|
126 |
+
"eval_steps_per_second": 2.28,
|
127 |
+
"eval_wer": 0.25065069725120087,
|
128 |
+
"step": 10000
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 34.7,
|
132 |
+
"eval_loss": 0.40214526653289795,
|
133 |
+
"eval_runtime": 139.4093,
|
134 |
+
"eval_samples_per_second": 36.411,
|
135 |
+
"eval_steps_per_second": 2.281,
|
136 |
+
"eval_wer": 0.2508411452271621,
|
137 |
+
"step": 11000
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 37.85,
|
141 |
+
"learning_rate": 0.00064185667752443,
|
142 |
+
"loss": 0.9623,
|
143 |
+
"step": 12000
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 37.85,
|
147 |
+
"eval_loss": 0.40321338176727295,
|
148 |
+
"eval_runtime": 139.9917,
|
149 |
+
"eval_samples_per_second": 36.259,
|
150 |
+
"eval_steps_per_second": 2.272,
|
151 |
+
"eval_wer": 0.2378060393169266,
|
152 |
+
"step": 12000
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 41.01,
|
156 |
+
"eval_loss": 0.4147748053073883,
|
157 |
+
"eval_runtime": 139.3612,
|
158 |
+
"eval_samples_per_second": 36.423,
|
159 |
+
"eval_steps_per_second": 2.282,
|
160 |
+
"eval_wer": 0.23744630425122204,
|
161 |
+
"step": 13000
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 44.16,
|
165 |
+
"learning_rate": 0.0005767100977198697,
|
166 |
+
"loss": 0.9077,
|
167 |
+
"step": 14000
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"epoch": 44.16,
|
171 |
+
"eval_loss": 0.4350396394729614,
|
172 |
+
"eval_runtime": 138.8108,
|
173 |
+
"eval_samples_per_second": 36.568,
|
174 |
+
"eval_steps_per_second": 2.291,
|
175 |
+
"eval_wer": 0.23230420890026873,
|
176 |
+
"step": 14000
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 47.32,
|
180 |
+
"eval_loss": 0.4514589309692383,
|
181 |
+
"eval_runtime": 138.719,
|
182 |
+
"eval_samples_per_second": 36.592,
|
183 |
+
"eval_steps_per_second": 2.292,
|
184 |
+
"eval_wer": 0.22464396808938358,
|
185 |
+
"step": 15000
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 50.47,
|
189 |
+
"learning_rate": 0.0005115960912052118,
|
190 |
+
"loss": 0.8573,
|
191 |
+
"step": 16000
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 50.47,
|
195 |
+
"eval_loss": 0.4473990499973297,
|
196 |
+
"eval_runtime": 140.3605,
|
197 |
+
"eval_samples_per_second": 36.164,
|
198 |
+
"eval_steps_per_second": 2.266,
|
199 |
+
"eval_wer": 0.21797828893074042,
|
200 |
+
"step": 16000
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 53.63,
|
204 |
+
"eval_loss": 0.4649062752723694,
|
205 |
+
"eval_runtime": 137.3039,
|
206 |
+
"eval_samples_per_second": 36.969,
|
207 |
+
"eval_steps_per_second": 2.316,
|
208 |
+
"eval_wer": 0.21713185348202382,
|
209 |
+
"step": 17000
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 56.78,
|
213 |
+
"learning_rate": 0.00044651465798045605,
|
214 |
+
"loss": 0.8083,
|
215 |
+
"step": 18000
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"epoch": 56.78,
|
219 |
+
"eval_loss": 0.44551119208335876,
|
220 |
+
"eval_runtime": 139.4699,
|
221 |
+
"eval_samples_per_second": 36.395,
|
222 |
+
"eval_steps_per_second": 2.28,
|
223 |
+
"eval_wer": 0.2102334045749836,
|
224 |
+
"step": 18000
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 59.94,
|
228 |
+
"eval_loss": 0.4586869478225708,
|
229 |
+
"eval_runtime": 139.1403,
|
230 |
+
"eval_samples_per_second": 36.481,
|
231 |
+
"eval_steps_per_second": 2.285,
|
232 |
+
"eval_wer": 0.20917536026408787,
|
233 |
+
"step": 19000
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 63.09,
|
237 |
+
"learning_rate": 0.00038140065146579803,
|
238 |
+
"loss": 0.769,
|
239 |
+
"step": 20000
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 63.09,
|
243 |
+
"eval_loss": 0.4793929159641266,
|
244 |
+
"eval_runtime": 139.562,
|
245 |
+
"eval_samples_per_second": 36.371,
|
246 |
+
"eval_steps_per_second": 2.279,
|
247 |
+
"eval_wer": 0.20117654527371606,
|
248 |
+
"step": 20000
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 66.25,
|
252 |
+
"eval_loss": 0.4844733476638794,
|
253 |
+
"eval_runtime": 138.9678,
|
254 |
+
"eval_samples_per_second": 36.526,
|
255 |
+
"eval_steps_per_second": 2.288,
|
256 |
+
"eval_wer": 0.20073216666313987,
|
257 |
+
"step": 21000
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 69.4,
|
261 |
+
"learning_rate": 0.00031628664495114006,
|
262 |
+
"loss": 0.7308,
|
263 |
+
"step": 22000
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 69.4,
|
267 |
+
"eval_loss": 0.49372631311416626,
|
268 |
+
"eval_runtime": 139.7927,
|
269 |
+
"eval_samples_per_second": 36.311,
|
270 |
+
"eval_steps_per_second": 2.275,
|
271 |
+
"eval_wer": 0.20075332754935776,
|
272 |
+
"step": 22000
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 72.55,
|
276 |
+
"eval_loss": 0.4920376241207123,
|
277 |
+
"eval_runtime": 138.7644,
|
278 |
+
"eval_samples_per_second": 36.58,
|
279 |
+
"eval_steps_per_second": 2.292,
|
280 |
+
"eval_wer": 0.1894745751952092,
|
281 |
+
"step": 23000
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 75.71,
|
285 |
+
"learning_rate": 0.0002511400651465798,
|
286 |
+
"loss": 0.6927,
|
287 |
+
"step": 24000
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"epoch": 75.71,
|
291 |
+
"eval_loss": 0.5178954005241394,
|
292 |
+
"eval_runtime": 139.799,
|
293 |
+
"eval_samples_per_second": 36.309,
|
294 |
+
"eval_steps_per_second": 2.275,
|
295 |
+
"eval_wer": 0.19114628520642443,
|
296 |
+
"step": 24000
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 78.86,
|
300 |
+
"eval_loss": 0.520152747631073,
|
301 |
+
"eval_runtime": 140.3812,
|
302 |
+
"eval_samples_per_second": 36.159,
|
303 |
+
"eval_steps_per_second": 2.265,
|
304 |
+
"eval_wer": 0.18767589986668642,
|
305 |
+
"step": 25000
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 82.02,
|
309 |
+
"learning_rate": 0.00018602605863192182,
|
310 |
+
"loss": 0.6622,
|
311 |
+
"step": 26000
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 82.02,
|
315 |
+
"eval_loss": 0.5265706181526184,
|
316 |
+
"eval_runtime": 138.1289,
|
317 |
+
"eval_samples_per_second": 36.748,
|
318 |
+
"eval_steps_per_second": 2.302,
|
319 |
+
"eval_wer": 0.18401506655098715,
|
320 |
+
"step": 26000
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 85.17,
|
324 |
+
"eval_loss": 0.5350863933563232,
|
325 |
+
"eval_runtime": 140.1605,
|
326 |
+
"eval_samples_per_second": 36.216,
|
327 |
+
"eval_steps_per_second": 2.269,
|
328 |
+
"eval_wer": 0.18541168504136954,
|
329 |
+
"step": 27000
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 88.33,
|
333 |
+
"learning_rate": 0.00012091205211726384,
|
334 |
+
"loss": 0.6315,
|
335 |
+
"step": 28000
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 88.33,
|
339 |
+
"eval_loss": 0.5373002290725708,
|
340 |
+
"eval_runtime": 138.125,
|
341 |
+
"eval_samples_per_second": 36.749,
|
342 |
+
"eval_steps_per_second": 2.302,
|
343 |
+
"eval_wer": 0.18113718602535075,
|
344 |
+
"step": 28000
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 91.48,
|
348 |
+
"eval_loss": 0.5330832600593567,
|
349 |
+
"eval_runtime": 139.0156,
|
350 |
+
"eval_samples_per_second": 36.514,
|
351 |
+
"eval_steps_per_second": 2.288,
|
352 |
+
"eval_wer": 0.17923270626573842,
|
353 |
+
"step": 29000
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 94.64,
|
357 |
+
"learning_rate": 5.576547231270358e-05,
|
358 |
+
"loss": 0.6075,
|
359 |
+
"step": 30000
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 94.64,
|
363 |
+
"eval_loss": 0.538992166519165,
|
364 |
+
"eval_runtime": 138.185,
|
365 |
+
"eval_samples_per_second": 36.733,
|
366 |
+
"eval_steps_per_second": 2.301,
|
367 |
+
"eval_wer": 0.17787840954779185,
|
368 |
+
"step": 30000
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 97.79,
|
372 |
+
"eval_loss": 0.5459240078926086,
|
373 |
+
"eval_runtime": 137.8608,
|
374 |
+
"eval_samples_per_second": 36.82,
|
375 |
+
"eval_steps_per_second": 2.307,
|
376 |
+
"eval_wer": 0.17730706561990817,
|
377 |
+
"step": 31000
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 100.0,
|
381 |
+
"step": 31700,
|
382 |
+
"total_flos": 3.173184730349909e+20,
|
383 |
+
"train_loss": 0.8928292760036721,
|
384 |
+
"train_runtime": 80759.6589,
|
385 |
+
"train_samples_per_second": 25.144,
|
386 |
+
"train_steps_per_second": 0.393
|
387 |
+
}
|
388 |
+
],
|
389 |
+
"max_steps": 31700,
|
390 |
+
"num_train_epochs": 100,
|
391 |
+
"total_flos": 3.173184730349909e+20,
|
392 |
+
"trial_name": null,
|
393 |
+
"trial_params": null
|
394 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e69a04248e0ba54277463cd3b7be574e9546358e8382b38381a54e5df9b996a
|
3 |
+
size 3055
|
validation_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 100.0,
|
3 |
+
"eval_loss": 0.5438345074653625,
|
4 |
+
"eval_runtime": 140.268,
|
5 |
+
"eval_samples": 5076,
|
6 |
+
"eval_samples_per_second": 36.188,
|
7 |
+
"eval_steps_per_second": 2.267,
|
8 |
+
"eval_wer": 0.177349387392344
|
9 |
+
}
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"讗": 1, "讘": 2, "讙": 3, "讚": 4, "讛": 5, "讜": 6, "讝": 7, "讞": 8, "讟": 9, "讬": 10, "讱": 11, "讻": 12, "诇": 13, "诐": 14, "诪": 15, "谉": 16, "谞": 17, "住": 18, "注": 19, "祝": 20, "驻": 21, "抓": 22, "爪": 23, "拽": 24, "专": 25, "砖": 26, "转": 27, "|": 0, "[UNK]": 28, "[PAD]": 29}
|