imvladikon commited on
Commit
0468de3
1 Parent(s): e8f3ff1

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -0
README.md ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - he
4
+ license: apache-2.0
5
+ tags:
6
+ - automatic-speech-recognition
7
+ - robust-speech-event
8
+ - he
9
+ - generated_from_trainer
10
+ model-index:
11
+ - name: wav2vec2-xls-r-300m-hebrew
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # wav2vec2-xls-r-300m-hebrew
19
+
20
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.3533
23
+ - Wer: 0.2251
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 0.0003
43
+ - train_batch_size: 6
44
+ - eval_batch_size: 6
45
+ - seed: 42
46
+ - distributed_type: multi-GPU
47
+ - gradient_accumulation_steps: 4
48
+ - total_train_batch_size: 24
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_steps: 400
52
+ - num_epochs: 20.0
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
58
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|
59
+ | 3.3587 | 0.47 | 400 | 1.1883 | 0.8392 |
60
+ | 1.8377 | 0.95 | 800 | 0.8831 | 0.6852 |
61
+ | 1.7118 | 1.42 | 1200 | 0.8031 | 0.6566 |
62
+ | 1.6741 | 1.89 | 1600 | 0.7518 | 0.6104 |
63
+ | 1.6163 | 2.36 | 2000 | 0.6888 | 0.5591 |
64
+ | 1.5782 | 2.84 | 2400 | 0.6580 | 0.5165 |
65
+ | 1.5548 | 3.31 | 2800 | 0.6506 | 0.5184 |
66
+ | 1.5249 | 3.78 | 3200 | 0.6198 | 0.5028 |
67
+ | 1.5078 | 4.26 | 3600 | 0.5992 | 0.4932 |
68
+ | 1.4836 | 4.73 | 4000 | 0.5705 | 0.4651 |
69
+ | 1.4505 | 5.2 | 4400 | 0.5489 | 0.4508 |
70
+ | 1.4481 | 5.67 | 4800 | 0.5577 | 0.4562 |
71
+ | 1.4136 | 6.15 | 5200 | 0.5452 | 0.4371 |
72
+ | 1.3861 | 6.62 | 5600 | 0.5101 | 0.4087 |
73
+ | 1.3772 | 7.09 | 6000 | 0.4933 | 0.3951 |
74
+ | 1.3478 | 7.56 | 6400 | 0.4849 | 0.3922 |
75
+ | 1.3394 | 8.04 | 6800 | 0.4805 | 0.3892 |
76
+ | 1.3095 | 8.51 | 7200 | 0.4839 | 0.3834 |
77
+ | 1.306 | 8.98 | 7600 | 0.4611 | 0.3587 |
78
+ | 1.2707 | 9.46 | 8000 | 0.4545 | 0.3730 |
79
+ | 1.2626 | 9.93 | 8400 | 0.4516 | 0.3524 |
80
+ | 1.2412 | 10.4 | 8800 | 0.4314 | 0.3310 |
81
+ | 1.2456 | 10.87 | 9200 | 0.4401 | 0.3459 |
82
+ | 1.2081 | 11.35 | 9600 | 0.4399 | 0.3356 |
83
+ | 1.1998 | 11.82 | 10000 | 0.4195 | 0.3215 |
84
+ | 1.1826 | 12.29 | 10400 | 0.4221 | 0.3178 |
85
+ | 1.1573 | 12.77 | 10800 | 0.4098 | 0.3084 |
86
+ | 1.1416 | 13.24 | 11200 | 0.4086 | 0.3119 |
87
+ | 1.1174 | 13.71 | 11600 | 0.3854 | 0.2910 |
88
+ | 1.1048 | 14.18 | 12000 | 0.3859 | 0.2824 |
89
+ | 1.0748 | 14.66 | 12400 | 0.3854 | 0.2757 |
90
+ | 1.0697 | 15.13 | 12800 | 0.3740 | 0.2724 |
91
+ | 1.0477 | 15.6 | 13200 | 0.3693 | 0.2643 |
92
+ | 1.0356 | 16.08 | 13600 | 0.3727 | 0.2561 |
93
+ | 1.0083 | 16.55 | 14000 | 0.3652 | 0.2501 |
94
+ | 1.0 | 17.02 | 14400 | 0.3641 | 0.2457 |
95
+ | 0.9779 | 17.49 | 14800 | 0.3568 | 0.2409 |
96
+ | 0.9596 | 17.97 | 15200 | 0.3558 | 0.2376 |
97
+ | 0.946 | 18.44 | 15600 | 0.3591 | 0.2311 |
98
+ | 0.9389 | 18.91 | 16000 | 0.3540 | 0.2283 |
99
+ | 0.9173 | 19.39 | 16400 | 0.3552 | 0.2265 |
100
+ | 0.9122 | 19.86 | 16800 | 0.3535 | 0.2250 |
101
+
102
+
103
+ ### Framework versions
104
+
105
+ - Transformers 4.16.0.dev0
106
+ - Pytorch 1.10.1+cu102
107
+ - Datasets 1.17.1.dev0
108
+ - Tokenizers 0.11.0