--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy base_model: albert-base-v2 model-index: - name: fine-tuned-albert-tweets results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - type: accuracy value: 0.9305 name: Accuracy --- # fine-tuned-albert-tweets This model is a fine-tuned version of [albert-base-v2](https://huggingface.co./albert-base-v2) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1757 - Accuracy: 0.9305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3202 | 1.0 | 1000 | 0.2518 | 0.912 | | 0.1537 | 2.0 | 2000 | 0.1757 | 0.9305 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2