emanuelaboros
commited on
Create modelling_nar.py
Browse files- modelling_nar.py +187 -0
modelling_nar.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.modeling_outputs import TokenClassifierOutput
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from transformers import PreTrainedModel, AutoModel, AutoConfig, BertConfig
|
5 |
+
from torch.nn import CrossEntropyLoss
|
6 |
+
from typing import Optional, Tuple, Union
|
7 |
+
import logging, json, os
|
8 |
+
|
9 |
+
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
+
|
12 |
+
|
13 |
+
def get_info(label_map):
|
14 |
+
num_token_labels_dict = {task: len(labels) for task, labels in label_map.items()}
|
15 |
+
return num_token_labels_dict
|
16 |
+
|
17 |
+
|
18 |
+
class ModelForSequenceAndTokenClassification(PreTrainedModel):
|
19 |
+
def __init__(self, config, num_sequence_labels, num_token_labels, do_classif=False):
|
20 |
+
super().__init__(config)
|
21 |
+
self.num_token_labels = num_token_labels
|
22 |
+
self.num_sequence_labels = num_sequence_labels
|
23 |
+
self.config = config
|
24 |
+
self.do_classif = do_classif
|
25 |
+
|
26 |
+
self.bert = AutoModel.from_config(config)
|
27 |
+
classifier_dropout = (
|
28 |
+
config.classifier_dropout
|
29 |
+
if config.classifier_dropout is not None
|
30 |
+
else config.hidden_dropout_prob
|
31 |
+
)
|
32 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
33 |
+
|
34 |
+
# For token classification
|
35 |
+
self.token_classifier = nn.Linear(config.hidden_size, self.num_token_labels)
|
36 |
+
|
37 |
+
if do_classif:
|
38 |
+
# For the entire sequence classification
|
39 |
+
self.sequence_classifier = nn.Linear(
|
40 |
+
config.hidden_size, self.num_sequence_labels
|
41 |
+
)
|
42 |
+
|
43 |
+
# Initialize weights and apply final processing
|
44 |
+
self.post_init()
|
45 |
+
|
46 |
+
"""
|
47 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
48 |
+
models.
|
49 |
+
"""
|
50 |
+
|
51 |
+
config_class = AutoConfig
|
52 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
53 |
+
|
54 |
+
def do_classif(self):
|
55 |
+
return self.do_classif
|
56 |
+
|
57 |
+
def _init_weights(self, module):
|
58 |
+
"""Initialize the weights"""
|
59 |
+
if isinstance(module, nn.Linear):
|
60 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
61 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
62 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
63 |
+
if module.bias is not None:
|
64 |
+
module.bias.data.zero_()
|
65 |
+
elif isinstance(module, nn.Embedding):
|
66 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
67 |
+
if module.padding_idx is not None:
|
68 |
+
module.weight.data[module.padding_idx].zero_()
|
69 |
+
elif isinstance(module, nn.LayerNorm):
|
70 |
+
module.bias.data.zero_()
|
71 |
+
module.weight.data.fill_(1.0)
|
72 |
+
|
73 |
+
def forward(
|
74 |
+
self,
|
75 |
+
input_ids: Optional[torch.Tensor] = None,
|
76 |
+
attention_mask: Optional[torch.Tensor] = None,
|
77 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
78 |
+
position_ids: Optional[torch.Tensor] = None,
|
79 |
+
head_mask: Optional[torch.Tensor] = None,
|
80 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
81 |
+
token_labels: Optional[torch.Tensor] = None,
|
82 |
+
sequence_labels: Optional[torch.Tensor] = None,
|
83 |
+
offset_mapping: Optional[torch.Tensor] = None,
|
84 |
+
output_attentions: Optional[bool] = None,
|
85 |
+
output_hidden_states: Optional[bool] = None,
|
86 |
+
return_dict: Optional[bool] = None,
|
87 |
+
) -> Union[
|
88 |
+
Union[Tuple[torch.Tensor], SequenceClassifierOutput],
|
89 |
+
Union[Tuple[torch.Tensor], TokenClassifierOutput],
|
90 |
+
]:
|
91 |
+
r"""
|
92 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
93 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
94 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
95 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
96 |
+
"""
|
97 |
+
return_dict = (
|
98 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
99 |
+
)
|
100 |
+
|
101 |
+
outputs = self.bert(
|
102 |
+
input_ids,
|
103 |
+
attention_mask=attention_mask,
|
104 |
+
token_type_ids=token_type_ids,
|
105 |
+
position_ids=position_ids,
|
106 |
+
head_mask=head_mask,
|
107 |
+
inputs_embeds=inputs_embeds,
|
108 |
+
output_attentions=output_attentions,
|
109 |
+
output_hidden_states=output_hidden_states,
|
110 |
+
return_dict=return_dict,
|
111 |
+
)
|
112 |
+
|
113 |
+
# For token classification
|
114 |
+
token_output = outputs[0]
|
115 |
+
|
116 |
+
token_output = self.dropout(token_output)
|
117 |
+
token_logits = self.token_classifier(token_output)
|
118 |
+
|
119 |
+
if self.do_classif:
|
120 |
+
# For the entire sequence classification
|
121 |
+
pooled_output = outputs[1]
|
122 |
+
|
123 |
+
pooled_output = self.dropout(pooled_output)
|
124 |
+
sequence_logits = self.sequence_classifier(pooled_output)
|
125 |
+
|
126 |
+
# Computing the loss as the average of both losses
|
127 |
+
loss = None
|
128 |
+
if token_labels is not None:
|
129 |
+
loss_fct = CrossEntropyLoss()
|
130 |
+
# import pdb;pdb.set_trace()
|
131 |
+
loss_tokens = loss_fct(
|
132 |
+
token_logits.view(-1, self.num_token_labels), token_labels.view(-1)
|
133 |
+
)
|
134 |
+
|
135 |
+
if self.do_classif:
|
136 |
+
if self.config.problem_type == "regression":
|
137 |
+
loss_fct = MSELoss()
|
138 |
+
if self.num_sequence_labels == 1:
|
139 |
+
loss_sequence = loss_fct(
|
140 |
+
sequence_logits.squeeze(), sequence_labels.squeeze()
|
141 |
+
)
|
142 |
+
else:
|
143 |
+
loss_sequence = loss_fct(sequence_logits, sequence_labels)
|
144 |
+
if self.config.problem_type == "single_label_classification":
|
145 |
+
loss_fct = CrossEntropyLoss()
|
146 |
+
loss_sequence = loss_fct(
|
147 |
+
sequence_logits.view(-1, self.num_sequence_labels),
|
148 |
+
sequence_labels.view(-1),
|
149 |
+
)
|
150 |
+
elif self.config.problem_type == "multi_label_classification":
|
151 |
+
loss_fct = BCEWithLogitsLoss()
|
152 |
+
loss_sequence = loss_fct(sequence_logits, sequence_labels)
|
153 |
+
|
154 |
+
loss = loss_tokens + loss_sequence
|
155 |
+
else:
|
156 |
+
loss = loss_tokens
|
157 |
+
|
158 |
+
if not return_dict:
|
159 |
+
if self.do_classif:
|
160 |
+
output = (
|
161 |
+
sequence_logits,
|
162 |
+
token_logits,
|
163 |
+
) + outputs[2:]
|
164 |
+
return ((loss,) + output) if loss is not None else output
|
165 |
+
else:
|
166 |
+
output = (token_logits,) + outputs[2:]
|
167 |
+
return ((loss,) + output) if loss is not None else output
|
168 |
+
|
169 |
+
if self.do_classif:
|
170 |
+
return SequenceClassifierOutput(
|
171 |
+
loss=loss,
|
172 |
+
logits=sequence_logits,
|
173 |
+
hidden_states=outputs.hidden_states,
|
174 |
+
attentions=outputs.attentions,
|
175 |
+
), TokenClassifierOutput(
|
176 |
+
loss=loss,
|
177 |
+
logits=token_logits,
|
178 |
+
hidden_states=outputs.hidden_states,
|
179 |
+
attentions=outputs.attentions,
|
180 |
+
)
|
181 |
+
else:
|
182 |
+
return TokenClassifierOutput(
|
183 |
+
loss=loss,
|
184 |
+
logits=token_logits,
|
185 |
+
hidden_states=outputs.hidden_states,
|
186 |
+
attentions=outputs.attentions,
|
187 |
+
)
|