Upload folder using huggingface_hub
Browse files- config.json +9 -0
- newsagency_ner.py +4 -1
config.json
CHANGED
@@ -5,6 +5,15 @@
|
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"classifier_dropout": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
"hidden_act": "gelu",
|
9 |
"hidden_dropout_prob": 0.1,
|
10 |
"hidden_size": 768,
|
|
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"classifier_dropout": null,
|
8 |
+
"custom_pipelines": {
|
9 |
+
"newsagency-ner": {
|
10 |
+
"impl": "newsagency_ner.NewsAgencyModelPipeline",
|
11 |
+
"pt": [
|
12 |
+
"AutoModelForTokenClassification"
|
13 |
+
],
|
14 |
+
"tf": []
|
15 |
+
}
|
16 |
+
},
|
17 |
"hidden_act": "gelu",
|
18 |
"hidden_dropout_prob": 0.1,
|
19 |
"hidden_size": 768,
|
newsagency_ner.py
CHANGED
@@ -167,8 +167,11 @@ class NewsAgencyModelPipeline(Pipeline):
|
|
167 |
input_ids = torch.tensor([inputs["input_ids"]], dtype=torch.long).to(
|
168 |
self.model.device
|
169 |
)
|
|
|
|
|
|
|
170 |
with torch.no_grad():
|
171 |
-
outputs = self.model(input_ids)
|
172 |
return outputs, text_sentence
|
173 |
|
174 |
def postprocess(self, outputs, **kwargs):
|
|
|
167 |
input_ids = torch.tensor([inputs["input_ids"]], dtype=torch.long).to(
|
168 |
self.model.device
|
169 |
)
|
170 |
+
attention_mask = torch.tensor([inputs["attention_mask"]], dtype=torch.long).to(
|
171 |
+
self.model.device
|
172 |
+
)
|
173 |
with torch.no_grad():
|
174 |
+
outputs = self.model(input_ids, attention_mask)
|
175 |
return outputs, text_sentence
|
176 |
|
177 |
def postprocess(self, outputs, **kwargs):
|