--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-vit0 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8314176245210728 --- # swin-tiny-patch4-window7-224-vit0 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4836 - Accuracy: 0.8314 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.13 | 0.97 | 18 | 1.0297 | 0.4330 | | 0.9066 | 2.0 | 37 | 0.8349 | 0.6590 | | 0.7157 | 2.97 | 55 | 0.8050 | 0.6743 | | 0.6446 | 4.0 | 74 | 0.6934 | 0.7165 | | 0.5707 | 4.97 | 92 | 0.6324 | 0.7433 | | 0.5042 | 6.0 | 111 | 0.6156 | 0.7356 | | 0.4714 | 6.97 | 129 | 0.6825 | 0.7241 | | 0.4225 | 8.0 | 148 | 0.5692 | 0.7625 | | 0.3912 | 8.97 | 166 | 0.6150 | 0.7586 | | 0.3442 | 10.0 | 185 | 0.4901 | 0.8008 | | 0.289 | 10.97 | 203 | 0.5580 | 0.7739 | | 0.2827 | 12.0 | 222 | 0.5308 | 0.7969 | | 0.2375 | 12.97 | 240 | 0.5274 | 0.8046 | | 0.2493 | 14.0 | 259 | 0.5433 | 0.8046 | | 0.2309 | 14.97 | 277 | 0.5355 | 0.7931 | | 0.1963 | 16.0 | 296 | 0.4836 | 0.8314 | | 0.2162 | 16.97 | 314 | 0.4973 | 0.8238 | | 0.2256 | 18.0 | 333 | 0.4918 | 0.8276 | | 0.2124 | 18.97 | 351 | 0.5071 | 0.8161 | | 0.1797 | 19.46 | 360 | 0.4985 | 0.8199 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0