--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7090909090909091 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6671 - Accuracy: 0.7091 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1158 | 0.97 | 15 | 0.9997 | 0.5045 | | 0.8261 | 2.0 | 31 | 0.9180 | 0.5909 | | 0.7361 | 2.97 | 46 | 0.8047 | 0.65 | | 0.6325 | 4.0 | 62 | 0.7320 | 0.6818 | | 0.5946 | 4.97 | 77 | 0.7196 | 0.6773 | | 0.5149 | 6.0 | 93 | 0.6827 | 0.7273 | | 0.5083 | 6.97 | 108 | 0.6906 | 0.6955 | | 0.4316 | 8.0 | 124 | 0.6681 | 0.7091 | | 0.4214 | 8.97 | 139 | 0.6700 | 0.7091 | | 0.4096 | 9.68 | 150 | 0.6671 | 0.7091 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0