File size: 2,445 Bytes
665da34 f84041f 665da34 f84041f 665da34 eef7315 665da34 f84041f 665da34 07d1e4c a201fba 07d1e4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7674418604651163
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6503
- Accuracy: 0.7674
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0764 | 0.99 | 18 | 0.8915 | 0.6318 |
| 0.7888 | 1.97 | 36 | 0.7533 | 0.6860 |
| 0.707 | 2.96 | 54 | 0.7525 | 0.6977 |
| 0.6115 | 4.0 | 73 | 0.6723 | 0.7403 |
| 0.5552 | 4.99 | 91 | 0.7092 | 0.7093 |
| 0.5057 | 5.97 | 109 | 0.6733 | 0.7326 |
| 0.4761 | 6.96 | 127 | 0.6893 | 0.7326 |
| 0.4393 | 8.0 | 146 | 0.6933 | 0.7287 |
| 0.4284 | 8.99 | 164 | 0.6348 | 0.7519 |
| 0.4084 | 9.86 | 180 | 0.6503 | 0.7674 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|