--- license: apache-2.0 library_name: peft tags: - unsloth - generated_from_trainer base_model: mistralai/Mistral-7B-v0.3 model-index: - name: mistral_7b_v_MetaMathQA_40K_reverse results: [] --- # mistral_7b_v_MetaMathQA_40K_reverse This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co./mistralai/Mistral-7B-v0.3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 0.02 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7252 | 0.0211 | 13 | 0.6225 | | 0.5814 | 0.0421 | 26 | 0.5900 | | 0.5599 | 0.0632 | 39 | 0.5751 | | 0.548 | 0.0842 | 52 | 0.5708 | | 0.5371 | 0.1053 | 65 | 0.5625 | | 0.5347 | 0.1264 | 78 | 0.5600 | | 0.5232 | 0.1474 | 91 | 0.5529 | | 0.5382 | 0.1685 | 104 | 0.5478 | | 0.5178 | 0.1896 | 117 | 0.5482 | | 0.5272 | 0.2106 | 130 | 0.5423 | | 0.5135 | 0.2317 | 143 | 0.5397 | | 0.4943 | 0.2527 | 156 | 0.5321 | | 0.5012 | 0.2738 | 169 | 0.5323 | | 0.5077 | 0.2949 | 182 | 0.5300 | | 0.5031 | 0.3159 | 195 | 0.5233 | | 0.506 | 0.3370 | 208 | 0.5238 | | 0.4851 | 0.3580 | 221 | 0.5180 | | 0.4915 | 0.3791 | 234 | 0.5146 | | 0.4826 | 0.4002 | 247 | 0.5150 | | 0.4964 | 0.4212 | 260 | 0.5096 | | 0.4989 | 0.4423 | 273 | 0.5050 | | 0.4846 | 0.4633 | 286 | 0.5021 | | 0.4776 | 0.4844 | 299 | 0.5006 | | 0.4725 | 0.5055 | 312 | 0.4927 | | 0.4752 | 0.5265 | 325 | 0.4898 | | 0.4719 | 0.5476 | 338 | 0.4862 | | 0.4689 | 0.5687 | 351 | 0.4817 | | 0.4573 | 0.5897 | 364 | 0.4772 | | 0.4536 | 0.6108 | 377 | 0.4754 | | 0.4536 | 0.6318 | 390 | 0.4700 | | 0.4519 | 0.6529 | 403 | 0.4664 | | 0.4448 | 0.6740 | 416 | 0.4633 | | 0.4327 | 0.6950 | 429 | 0.4618 | | 0.4528 | 0.7161 | 442 | 0.4586 | | 0.4379 | 0.7371 | 455 | 0.4557 | | 0.4504 | 0.7582 | 468 | 0.4537 | | 0.4436 | 0.7793 | 481 | 0.4525 | | 0.4451 | 0.8003 | 494 | 0.4497 | | 0.435 | 0.8214 | 507 | 0.4482 | | 0.4247 | 0.8424 | 520 | 0.4466 | | 0.4295 | 0.8635 | 533 | 0.4455 | | 0.4204 | 0.8846 | 546 | 0.4444 | | 0.4381 | 0.9056 | 559 | 0.4433 | | 0.4355 | 0.9267 | 572 | 0.4430 | | 0.4234 | 0.9478 | 585 | 0.4424 | | 0.4261 | 0.9688 | 598 | 0.4421 | | 0.4266 | 0.9899 | 611 | 0.4421 | ### Framework versions - PEFT 0.7.1 - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1