--- base_model: unsloth/Qwen2-7B library_name: peft license: apache-2.0 tags: - unsloth - generated_from_trainer model-index: - name: Qwen2-7B_pct_reverse_r16 results: [] --- # Qwen2-7B_pct_reverse_r16 This model is a fine-tuned version of [unsloth/Qwen2-7B](https://huggingface.co./unsloth/Qwen2-7B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9143 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.02 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.0341 | 0.0206 | 8 | 1.9528 | | 2.0078 | 0.0412 | 16 | 1.9550 | | 2.0269 | 0.0618 | 24 | 1.9357 | | 1.9472 | 0.0824 | 32 | 1.9405 | | 1.993 | 0.1031 | 40 | 1.9381 | | 1.9936 | 0.1237 | 48 | 1.9402 | | 2.0043 | 0.1443 | 56 | 1.9410 | | 1.9356 | 0.1649 | 64 | 1.9369 | | 1.9953 | 0.1855 | 72 | 1.9396 | | 2.0184 | 0.2061 | 80 | 1.9405 | | 1.995 | 0.2267 | 88 | 1.9410 | | 1.9307 | 0.2473 | 96 | 1.9407 | | 2.0037 | 0.2680 | 104 | 1.9414 | | 1.889 | 0.2886 | 112 | 1.9397 | | 1.9455 | 0.3092 | 120 | 1.9401 | | 1.9789 | 0.3298 | 128 | 1.9438 | | 1.9642 | 0.3504 | 136 | 1.9408 | | 1.9387 | 0.3710 | 144 | 1.9405 | | 2.0036 | 0.3916 | 152 | 1.9394 | | 2.0407 | 0.4122 | 160 | 1.9393 | | 2.0519 | 0.4329 | 168 | 1.9385 | | 1.9361 | 0.4535 | 176 | 1.9396 | | 1.9812 | 0.4741 | 184 | 1.9404 | | 1.9947 | 0.4947 | 192 | 1.9382 | | 1.9343 | 0.5153 | 200 | 1.9353 | | 1.9707 | 0.5359 | 208 | 1.9357 | | 2.0131 | 0.5565 | 216 | 1.9351 | | 1.9416 | 0.5771 | 224 | 1.9310 | | 1.9652 | 0.5977 | 232 | 1.9351 | | 1.9156 | 0.6184 | 240 | 1.9266 | | 1.9405 | 0.6390 | 248 | 1.9260 | | 1.9909 | 0.6596 | 256 | 1.9250 | | 1.9179 | 0.6802 | 264 | 1.9232 | | 1.9877 | 0.7008 | 272 | 1.9217 | | 1.8745 | 0.7214 | 280 | 1.9207 | | 2.016 | 0.7420 | 288 | 1.9195 | | 1.9238 | 0.7626 | 296 | 1.9185 | | 1.9414 | 0.7833 | 304 | 1.9193 | | 1.9417 | 0.8039 | 312 | 1.9172 | | 1.9647 | 0.8245 | 320 | 1.9169 | | 1.9704 | 0.8451 | 328 | 1.9172 | | 1.9629 | 0.8657 | 336 | 1.9157 | | 1.9574 | 0.8863 | 344 | 1.9150 | | 1.9278 | 0.9069 | 352 | 1.9143 | | 2.0079 | 0.9275 | 360 | 1.9140 | | 1.9203 | 0.9481 | 368 | 1.9138 | | 1.9834 | 0.9688 | 376 | 1.9139 | | 1.8809 | 0.9894 | 384 | 1.9143 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1