File size: 3,869 Bytes
c0152da
3e0d38c
c0152da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e0d38c
c0152da
f4e16ce
c0152da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
390fc8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e16ce
 
 
 
 
 
 
 
 
 
 
 
c0152da
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
base_model: unsloth/Qwen2-7B
library_name: peft
license: apache-2.0
tags:
- unsloth
- generated_from_trainer
model-index:
- name: Qwen2-7B_pct_ortho
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Qwen2-7B_pct_ortho

This model is a fine-tuned version of [unsloth/Qwen2-7B](https://huggingface.co./unsloth/Qwen2-7B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0710

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.0836        | 0.0206 | 8    | 1.9997          |
| 2.0451        | 0.0412 | 16   | 1.9894          |
| 2.0868        | 0.0618 | 24   | 2.0094          |
| 2.0404        | 0.0824 | 32   | 2.0230          |
| 2.0951        | 0.1031 | 40   | 2.0406          |
| 2.1037        | 0.1237 | 48   | 2.0564          |
| 2.1105        | 0.1443 | 56   | 2.0572          |
| 2.098         | 0.1649 | 64   | 2.0666          |
| 2.1234        | 0.1855 | 72   | 2.0810          |
| 2.1848        | 0.2061 | 80   | 2.0770          |
| 2.1566        | 0.2267 | 88   | 2.0833          |
| 2.1434        | 0.2473 | 96   | 2.0774          |
| 2.1722        | 0.2680 | 104  | 2.0898          |
| 2.0835        | 0.2886 | 112  | 2.1009          |
| 2.1355        | 0.3092 | 120  | 2.1047          |
| 2.1492        | 0.3298 | 128  | 2.0960          |
| 2.1524        | 0.3504 | 136  | 2.1070          |
| 2.1429        | 0.3710 | 144  | 2.1120          |
| 2.1611        | 0.3916 | 152  | 2.1227          |
| 2.1943        | 0.4122 | 160  | 2.1149          |
| 2.2268        | 0.4329 | 168  | 2.1105          |
| 2.135         | 0.4535 | 176  | 2.1087          |
| 2.1443        | 0.4741 | 184  | 2.1076          |
| 2.1925        | 0.4947 | 192  | 2.1068          |
| 2.1225        | 0.5153 | 200  | 2.1034          |
| 2.1679        | 0.5359 | 208  | 2.1078          |
| 2.2091        | 0.5565 | 216  | 2.1100          |
| 2.1175        | 0.5771 | 224  | 2.0976          |
| 2.1288        | 0.5977 | 232  | 2.1060          |
| 2.1234        | 0.6184 | 240  | 2.0916          |
| 2.1084        | 0.6390 | 248  | 2.0916          |
| 2.1631        | 0.6596 | 256  | 2.0923          |
| 2.1299        | 0.6802 | 264  | 2.0842          |
| 2.1939        | 0.7008 | 272  | 2.0919          |
| 2.071         | 0.7214 | 280  | 2.0830          |
| 2.181         | 0.7420 | 288  | 2.0801          |
| 2.1076        | 0.7626 | 296  | 2.0804          |
| 2.1185        | 0.7833 | 304  | 2.0761          |
| 2.1079        | 0.8039 | 312  | 2.0749          |
| 2.1499        | 0.8245 | 320  | 2.0783          |
| 2.1551        | 0.8451 | 328  | 2.0784          |
| 2.1117        | 0.8657 | 336  | 2.0784          |
| 2.1463        | 0.8863 | 344  | 2.0750          |
| 2.1167        | 0.9069 | 352  | 2.0696          |
| 2.1882        | 0.9275 | 360  | 2.0714          |
| 2.1131        | 0.9481 | 368  | 2.0716          |
| 2.1626        | 0.9688 | 376  | 2.0714          |
| 2.1141        | 0.9894 | 384  | 2.0710          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1