ilhamstoked
commited on
Commit
·
424debf
1
Parent(s):
f793624
Rename app1.py to app.py
Browse files- app1.py → app.py +20 -6
app1.py → app.py
RENAMED
@@ -1,10 +1,11 @@
|
|
1 |
import streamlit as st
|
2 |
import numpy as np
|
3 |
import tensorflow as tf
|
|
|
4 |
from tcp_latency import measure_latency
|
5 |
|
6 |
# Measure Latency
|
7 |
-
|
8 |
#35.201.127.49:443
|
9 |
#192.168.18.6:8501
|
10 |
|
@@ -31,11 +32,17 @@ def classify_image(image):
|
|
31 |
|
32 |
# Run inference
|
33 |
with st.spinner('Classifying...'):
|
|
|
34 |
interpreter.invoke()
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# Get the output probabilities
|
37 |
output_data = interpreter.get_tensor(output_details[0]['index'])
|
38 |
-
|
|
|
39 |
|
40 |
# Define the labels for the 7 classes
|
41 |
labels = ['akiec', 'bcc', 'bkl', 'df', 'mel', 'nv', 'vasc']
|
@@ -61,24 +68,31 @@ def main():
|
|
61 |
st.write("- ['mel'](https://en.wikipedia.org/wiki/Melanoma) - melanoma,")
|
62 |
st.write("- ['vasc'](https://en.wikipedia.org/wiki/Vascular_anomaly) - vascular skin (Cherry Angiomas, Angiokeratomas, Pyogenic Granulomas.)")
|
63 |
st.write("Due to imperfection of the model and a room of improvement for the future, if the probabilities shown are less than 70%, the skin is either healthy or the input image is unclear. This means that the model can be the first diagnostic of your skin illness. As precautions for your skin illness, it is better to do consultation with dermatologist. ")
|
64 |
-
|
65 |
|
66 |
# Get the input image from the user
|
67 |
image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
68 |
|
69 |
# Show the input image
|
70 |
if image is not None:
|
71 |
-
image = np.array(Image.open(image))
|
72 |
st.image(image, width=150)
|
73 |
|
74 |
# Run inference on the input image
|
75 |
-
probs = classify_image(image)
|
|
|
|
|
|
|
76 |
|
77 |
# Display the top 3 predictions
|
78 |
top_3_indices = np.argsort(probs)[::-1][:3]
|
79 |
st.write("Top 3 predictions:")
|
80 |
for i in range(3):
|
81 |
st.write("%d. %s (%.2f%%)" % (i + 1, labels[top_3_indices[i]], probs[top_3_indices[i]] * 100))
|
|
|
|
|
|
|
|
|
82 |
|
83 |
if __name__ == '__main__':
|
84 |
-
main()
|
|
|
1 |
import streamlit as st
|
2 |
import numpy as np
|
3 |
import tensorflow as tf
|
4 |
+
import time
|
5 |
from tcp_latency import measure_latency
|
6 |
|
7 |
# Measure Latency
|
8 |
+
|
9 |
#35.201.127.49:443
|
10 |
#192.168.18.6:8501
|
11 |
|
|
|
32 |
|
33 |
# Run inference
|
34 |
with st.spinner('Classifying...'):
|
35 |
+
start_time = time.time()
|
36 |
interpreter.invoke()
|
37 |
+
end_time = time.time()
|
38 |
+
|
39 |
+
# Calculate the classification duration
|
40 |
+
classifying_duration = end_time - start_time
|
41 |
|
42 |
# Get the output probabilities
|
43 |
output_data = interpreter.get_tensor(output_details[0]['index'])
|
44 |
+
|
45 |
+
return output_data[0], classifying_duration
|
46 |
|
47 |
# Define the labels for the 7 classes
|
48 |
labels = ['akiec', 'bcc', 'bkl', 'df', 'mel', 'nv', 'vasc']
|
|
|
68 |
st.write("- ['mel'](https://en.wikipedia.org/wiki/Melanoma) - melanoma,")
|
69 |
st.write("- ['vasc'](https://en.wikipedia.org/wiki/Vascular_anomaly) - vascular skin (Cherry Angiomas, Angiokeratomas, Pyogenic Granulomas.)")
|
70 |
st.write("Due to imperfection of the model and a room of improvement for the future, if the probabilities shown are less than 70%, the skin is either healthy or the input image is unclear. This means that the model can be the first diagnostic of your skin illness. As precautions for your skin illness, it is better to do consultation with dermatologist. ")
|
71 |
+
|
72 |
|
73 |
# Get the input image from the user
|
74 |
image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
75 |
|
76 |
# Show the input image
|
77 |
if image is not None:
|
78 |
+
image = np.array(Image.open(image).convert("RGB"))
|
79 |
st.image(image, width=150)
|
80 |
|
81 |
# Run inference on the input image
|
82 |
+
probs, classifying_duration = classify_image(image)
|
83 |
+
|
84 |
+
# Display the classification duration
|
85 |
+
st.write(f"Classification duration: {classifying_duration:.4f} seconds")
|
86 |
|
87 |
# Display the top 3 predictions
|
88 |
top_3_indices = np.argsort(probs)[::-1][:3]
|
89 |
st.write("Top 3 predictions:")
|
90 |
for i in range(3):
|
91 |
st.write("%d. %s (%.2f%%)" % (i + 1, labels[top_3_indices[i]], probs[top_3_indices[i]] * 100))
|
92 |
+
|
93 |
+
latency = measure_latency(host='35.201.127.49', port=443)
|
94 |
+
st.write("Network Latency:")
|
95 |
+
st.write(latency[0])
|
96 |
|
97 |
if __name__ == '__main__':
|
98 |
+
main()
|