File size: 2,063 Bytes
bee5848 f43f2d8 bee5848 b4bf85f f43f2d8 bee5848 f43f2d8 bee5848 1c60cd1 bee5848 f43f2d8 bee5848 1c60cd1 bee5848 b4bf85f f43f2d8 b4bf85f bee5848 1c60cd1 f43f2d8 1c60cd1 bee5848 f43f2d8 bee5848 f43f2d8 bee5848 f43f2d8 bee5848 4b34f91 bee5848 4b34f91 bee5848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
language:
- ur
license: apache-2.0
tags:
- automatic-speech-recognition
- hf-asr-leaderboard
- urdu
- ur
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
base_model: openai/whisper-medium
model-index:
- name: Whisper Medium Urdu
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_11_0
type: mozilla-foundation/common_voice_11_0
args: 'config: ur, split: test'
metrics:
- type: wer
value: 26.980130911344357
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium Urdu
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 ur dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4685
- Wer: 26.9801
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 40
- training_steps: 300
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.3908 | 0.48 | 100 | 0.5148 | 30.7061 |
| 0.3519 | 0.97 | 200 | 0.4685 | 26.9801 |
| 0.2426 | 1.45 | 300 | 0.4636 | 28.5023 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|