--- license: apache-2.0 tags: - generated_from_trainer datasets: - fleurs metrics: - wer model-index: - name: openai/whisper-base results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fleurs type: fleurs config: ps_af split: test args: ps_af metrics: - name: Wer type: wer value: 59.200968523002416 --- # openai/whisper-base This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co./openai/whisper-base) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.9339 - Wer: 59.2010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 30 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.9153 | 2.5 | 100 | 1.0240 | 68.9864 | | 0.6865 | 5.0 | 200 | 0.8968 | 61.7660 | | 0.5474 | 7.5 | 300 | 0.8744 | 60.5554 | | 0.4646 | 10.0 | 400 | 0.8710 | 60.0560 | | 0.4557 | 12.5 | 500 | 0.8732 | 59.4658 | | 0.3882 | 15.0 | 600 | 0.8819 | 59.0648 | | 0.3346 | 17.5 | 700 | 0.9032 | 59.4809 | | 0.2947 | 20.0 | 800 | 0.9144 | 59.7685 | | 0.2724 | 22.5 | 900 | 0.9289 | 58.9815 | | 0.2785 | 25.0 | 1000 | 0.9339 | 59.2010 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2