ihanif commited on
Commit
ed79ec3
·
1 Parent(s): 43ab4b9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -15
README.md CHANGED
@@ -1,39 +1,38 @@
1
  ---
2
  license: apache-2.0
3
  tags:
4
- - whisper-event
5
  - generated_from_trainer
6
  datasets:
7
- - google/fleurs
8
  metrics:
9
  - wer
10
  model-index:
11
- - name: Whisper Tiny Pashto
12
  results:
13
  - task:
14
  name: Automatic Speech Recognition
15
  type: automatic-speech-recognition
16
  dataset:
17
- name: google/fleurs ps_af
18
- type: google/fleurs
19
  config: ps_af
20
  split: test
21
  args: ps_af
22
  metrics:
23
  - name: Wer
24
  type: wer
25
- value: 60.05599273607748
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
  should probably proofread and complete it, then remove this comment. -->
30
 
31
- # Whisper Tiny Pashto
32
 
33
- This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the google/fleurs ps_af dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.8710
36
- - Wer: 60.0560
37
 
38
  ## Model description
39
 
@@ -52,14 +51,16 @@ More information needed
52
  ### Training hyperparameters
53
 
54
  The following hyperparameters were used during training:
55
- - learning_rate: 1e-06
56
- - train_batch_size: 64
57
- - eval_batch_size: 32
58
  - seed: 42
 
 
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
- - lr_scheduler_warmup_steps: 30
62
- - training_steps: 1200
63
  - mixed_precision_training: Native AMP
64
 
65
  ### Training results
@@ -78,6 +79,7 @@ The following hyperparameters were used during training:
78
  | 0.2785 | 25.0 | 1000 | 0.9339 | 59.2010 |
79
  | 0.2454 | 27.5 | 1100 | 0.9439 | 59.1934 |
80
  | 0.2297 | 30.0 | 1200 | 0.9485 | 59.0421 |
 
81
 
82
 
83
  ### Framework versions
 
1
  ---
2
  license: apache-2.0
3
  tags:
 
4
  - generated_from_trainer
5
  datasets:
6
+ - fleurs
7
  metrics:
8
  - wer
9
  model-index:
10
+ - name: openai/whisper-base
11
  results:
12
  - task:
13
  name: Automatic Speech Recognition
14
  type: automatic-speech-recognition
15
  dataset:
16
+ name: fleurs
17
+ type: fleurs
18
  config: ps_af
19
  split: test
20
  args: ps_af
21
  metrics:
22
  - name: Wer
23
  type: wer
24
+ value: 59.07990314769975
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
  should probably proofread and complete it, then remove this comment. -->
29
 
30
+ # openai/whisper-base
31
 
32
+ This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the fleurs dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.9529
35
+ - Wer: 59.0799
36
 
37
  ## Model description
38
 
 
51
  ### Training hyperparameters
52
 
53
  The following hyperparameters were used during training:
54
+ - learning_rate: 1e-07
55
+ - train_batch_size: 32
56
+ - eval_batch_size: 16
57
  - seed: 42
58
+ - gradient_accumulation_steps: 2
59
+ - total_train_batch_size: 64
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_steps: 100
63
+ - training_steps: 1300
64
  - mixed_precision_training: Native AMP
65
 
66
  ### Training results
 
79
  | 0.2785 | 25.0 | 1000 | 0.9339 | 59.2010 |
80
  | 0.2454 | 27.5 | 1100 | 0.9439 | 59.1934 |
81
  | 0.2297 | 30.0 | 1200 | 0.9485 | 59.0421 |
82
+ | 0.2383 | 33.33 | 1300 | 0.9529 | 59.0799 |
83
 
84
 
85
  ### Framework versions