--- license: apache-2.0 tags: - google/fleurs - generated_from_trainer - automatic-speech-recognition - pashto - ps datasets: - fleurs metrics: - wer base_model: facebook/wav2vec2-xls-r-300m model-index: - name: facebook/wav2vec2-xls-r-300m results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs args: 'config: ps_af, split: test' metrics: - type: wer value: 51.59447476125512 name: Wer --- # facebook/wav2vec2-xls-r-300m This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co./facebook/wav2vec2-xls-r-300m) on the GOOGLE/FLEURS - PS_AF dataset. It achieves the following results on the evaluation set: - Loss: 0.9162 - Wer: 51.59 - Cer: 19.72 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-07 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:-----:|:----:|:------:|:---------------:|:------:| | 5.0767 | 6.33 | 500 | 1.0 | 4.8783 | 1.0 | | 3.1156 | 12.66 | 1000 | 1.0 | 3.0990 | 1.0 | | 1.3506 | 18.99 | 1500 | 0.2889 | 1.1056 | 0.7031 | | 0.9997 | 25.32 | 2000 | 0.2301 | 0.9191 | 0.5944 | | 0.7838 | 31.65 | 2500 | 0.2152 | 0.8952 | 0.5556 | | 0.6665 | 37.97 | 3000 | 0.2017 | 0.8908 | 0.5252 | | 0.6265 | 44.3 | 3500 | 0.1954 | 0.9063 | 0.5133 | | 0.5935 | 50.63 | 4000 | 0.1969 | 0.9162 | 0.5156 | | 0.5174 | 56.96 | 4500 | 0.1972 | 0.9287 | 0.5140 | | 0.5462 | 63.29 | 5000 | 0.1974 | 0.9370 | 0.5138 | | 0.5564 | 69.62 | 5500 | 0.1977 | 0.9461 | 0.5148 | | 0.5252 | 75.95 | 6000 | 0.9505 | 0.5118 | 0.1969 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2