File size: 2,441 Bytes
fc73885 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
base_model: steja/whisper-small-persian
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: pashto-asr-cws-v1
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fleurs
type: fleurs
config: ps_af
split: None
args: ps_af
metrics:
- name: Wer
type: wer
value: 49.37953995157385
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pashto-asr-cws-v1
This model is a fine-tuned version of [steja/whisper-small-persian](https://huggingface.co./steja/whisper-small-persian) on the fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7501
- Wer: 49.3795
- Cer: 20.8766
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 30
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|
| 0.7899 | 0.8065 | 100 | 0.8629 | 75.8323 | 47.9045 |
| 0.5051 | 1.6129 | 200 | 0.6860 | 52.9888 | 23.1242 |
| 0.3555 | 2.4194 | 300 | 0.6612 | 51.6798 | 22.9404 |
| 0.257 | 3.2258 | 400 | 0.6565 | 49.2660 | 21.0588 |
| 0.2174 | 4.0323 | 500 | 0.6560 | 47.1777 | 19.8523 |
| 0.1626 | 4.8387 | 600 | 0.6787 | 48.7591 | 20.4305 |
| 0.1268 | 5.6452 | 700 | 0.7062 | 49.4401 | 21.0137 |
| 0.0871 | 6.4516 | 800 | 0.7279 | 49.2433 | 20.7062 |
| 0.0685 | 7.2581 | 900 | 0.7443 | 49.3795 | 21.2276 |
| 0.0662 | 8.0645 | 1000 | 0.7501 | 49.3795 | 20.8766 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|