--- tags: - classification - generated_from_trainer datasets: - hate_speech_offensive metrics: - accuracy model-index: - name: clasificador-hate_speech_offensive-BERTweet results: - task: name: Text Classification type: text-classification dataset: name: hate_speech_offensive type: hate_speech_offensive config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9195077667944321 --- # clasificador-hate_speech_offensive-BERTweet This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co./vinai/bertweet-base) on the hate_speech_offensive dataset. It achieves the following results on the evaluation set: - Loss: 0.2951 - Accuracy: 0.9195 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3129 | 1.0 | 2479 | 0.3258 | 0.9112 | | 0.2877 | 2.0 | 4958 | 0.2844 | 0.9124 | | 0.235 | 3.0 | 7437 | 0.2951 | 0.9195 | ### Framework versions - Transformers 4.27.2 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2