File size: 1,377 Bytes
13f353c a39428e 13f353c 9ded086 13f353c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
language:
- en
pipeline_tag: text-generation
datasets:
- nlpai-lab/databricks-dolly-15k-ko
- kyujinpy/KOR-OpenOrca-Platypus-v3
- KETI-AIR/kor_boolq
- heegyu/open-korean-instructions
---
**Input** Models input text only.
**Output** Models generate text only.
**Base Model** [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co./upstage/SOLAR-10.7B-Instruct-v1.0)
**Training Dataset**
- [nlpai-lab/databricks-dolly-15k-ko](https://huggingface.co./datasets/nlpai-lab/databricks-dolly-15k-ko)
- [kyujinpy/KOR-OpenOrca-Platypus-v3](https://huggingface.co./datasets/kyujinpy/KOR-OpenOrca-Platypus-v3)
- [heegyu/open-korean-instructions](heegyu/open-korean-instructions)
- [KETI-AIR/kor_boolq](https://huggingface.co./datasets/KETI-AIR/kor_boolq)
- [AIhub μν λ²μ λ°μ΄ν° μΌλΆ](https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&dataSetSn=71593)
# Implementation Code
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "ifuseok/sft-solar-10.7b-v1"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
```
# Prompt Example
```
### System:
μμ€ν
λ©μμ§ μ
λλ€.
### User:
μ μ μ
λλ€.
### Assistant
μ΄μμ€ν΄νΈ μ
λλ€.
``` |