import numpy as np from keras.saving import load_model from keras.preprocessing.text import Tokenizer from keras_self_attention import SeqSelfAttention from model_settings import * with open("responses.txt", "r") as f: lines = [x.rstrip("\n") for x in f.readlines()] tokenizer = Tokenizer() # a tokenizer is a thing to split text into words, it might have some other stuff like making all the letters lowercase, etc. tokenizer.fit_on_texts(lines) model = load_model("chatbot.keras", custom_objects={"SeqSelfAttention": SeqSelfAttention}) def find_line_number(array): return sorted(zip(list(array), [x for x in range(len(array))]), key=lambda x:x[0], reverse=True)[0][1] # yeah, one big line, find the biggest value and return the number of the line def generate(text, verbose=1): tokens = list(tokenizer.texts_to_sequences([text,])[0]) # text into tokens (almost words) tokens = (tokens+[0,]*inp_len)[:inp_len] # cutting off the sentence after inp_len words prediction = model.predict(np.array([tokens,]), verbose=verbose)[0] line = find_line_number(prediction) return lines[line] if __name__ == "__main__": # if this code is not being imported, open the chat while True: inp = input("User: ") print(f"Bot: {generate(inp)}")