neural-chatbot / test.py
ierhon's picture
Finish the generate function and use the settings.py that I'm going to create
558b544
raw
history blame
1.32 kB
import json # TODO: use the responses file after it's done instead of loading the dataset again
import numpy as np
from keras.saving import load_model
from keras_self_attention import SeqSelfAttention
from vecs import *
from model_settings import *
with open("dataset.json", "r") as f:
dset = json.load(f)
tokenizer = Tokenizer() # a tokenizer is a thing to split text into words, it might have some other stuff like making all the letters lowercase, etc.
tokenizer.fit_on_texts(list(dset.keys()))
model = load_model("chatbot.keras", custom_objects={"SeqSelfAttention": SeqSelfAttention})
def find_line_number(array):
return sorted(zip(list(array), [x for x in range(len(array))]), key=lambda x:x[0], reverse=True)[0][1] # yeah, one big line, find the biggest value and return the number of the line
def generate(text):
tokens = list(tokenizer.texts_to_sequences([text,])[0]) # text into tokens (almost words)
tokens = (tokens+[0,]*inp_len)[:inp_len] # cutting off the sentence after inp_len words
prediction = model.predict(np.array([tokens,]))[0]
line = find_line_number(prediction)
return list(dset.values())[line]
if __name__ == "__main__": # if this code is not being imported, open the chat
while True:
inp = input("User: ")
print(f"Bot: {generate(inp)}")