--- license: mit base_model: hyunwoongko/kobart tags: - generated_from_trainer model-index: - name: qa_kor_math_2 results: [] --- # qa_kor_math_2 This model is a fine-tuned version of [hyunwoongko/kobart](https://huggingface.co./hyunwoongko/kobart) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.56 | 100 | 3.2887 | | No log | 1.13 | 200 | 0.8359 | | No log | 1.69 | 300 | 0.4944 | | No log | 2.26 | 400 | 0.3843 | | 2.4704 | 2.82 | 500 | 0.3349 | | 2.4704 | 3.39 | 600 | 0.3005 | | 2.4704 | 3.95 | 700 | 0.2768 | | 2.4704 | 4.52 | 800 | 0.2641 | | 2.4704 | 5.08 | 900 | 0.2479 | | 0.3213 | 5.65 | 1000 | 0.2335 | | 0.3213 | 6.21 | 1100 | 0.2208 | | 0.3213 | 6.78 | 1200 | 0.2117 | | 0.3213 | 7.34 | 1300 | 0.2041 | | 0.3213 | 7.91 | 1400 | 0.1964 | | 0.2503 | 8.47 | 1500 | 0.1876 | | 0.2503 | 9.04 | 1600 | 0.1790 | | 0.2503 | 9.6 | 1700 | 0.1745 | | 0.2503 | 10.17 | 1800 | 0.1673 | | 0.2503 | 10.73 | 1900 | 0.1623 | | 0.2141 | 11.3 | 2000 | 0.1579 | | 0.2141 | 11.86 | 2100 | 0.1527 | | 0.2141 | 12.43 | 2200 | 0.1494 | | 0.2141 | 12.99 | 2300 | 0.1438 | | 0.2141 | 13.56 | 2400 | 0.1427 | | 0.1873 | 14.12 | 2500 | 0.1386 | | 0.1873 | 14.69 | 2600 | 0.1347 | | 0.1873 | 15.25 | 2700 | 0.1334 | | 0.1873 | 15.82 | 2800 | 0.1321 | | 0.1873 | 16.38 | 2900 | 0.1295 | | 0.1718 | 16.95 | 3000 | 0.1276 | | 0.1718 | 17.51 | 3100 | 0.1263 | | 0.1718 | 18.08 | 3200 | 0.1255 | | 0.1718 | 18.64 | 3300 | 0.1244 | | 0.1718 | 19.21 | 3400 | 0.1240 | | 0.1628 | 19.77 | 3500 | 0.1234 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2