--- license: mit base_model: gogamza/kobart-base-v2 tags: - generated_from_trainer model-index: - name: qa_kor_math results: [] --- # qa_kor_math This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co./gogamza/kobart-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3294 ## Model description 한국어 수학 문제를 입력하면, 문제 유형과 문제 유형에 대한 설명, 풀이(코드), 정답이 출력되도록 fine tuning 했습니다.
문제 유형 종류로는 산술연산, 순서정하기, 조합하기, 수 찾기, 크기 비교, 도형이 있습니다.
모델이 가벼운 탓인지 정확도가 높지는 않아 보입니다.
## Intended uses & limitations ## Training and evaluation data [TUNiB.ai](https://tunib.ai/)에서 [github](https://github.com/tunib-ai/KMWP)에 공개한 train 데이터 셋으로 학습하였습니다.
## Training procedure The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.56 | 100 | 3.5725 | | No log | 1.13 | 200 | 1.2367 | | No log | 1.69 | 300 | 0.7100 | | No log | 2.26 | 400 | 0.5420 | | 2.4974 | 2.82 | 500 | 0.5891 | | 2.4974 | 3.39 | 600 | 0.5370 | | 2.4974 | 3.95 | 700 | 0.4738 | | 2.4974 | 4.52 | 800 | 0.4985 | | 2.4974 | 5.08 | 900 | 0.4540 | | 0.3445 | 5.65 | 1000 | 0.4439 | | 0.3445 | 6.21 | 1100 | 0.4261 | | 0.3445 | 6.78 | 1200 | 0.4007 | | 0.3445 | 7.34 | 1300 | 0.3739 | | 0.3445 | 7.91 | 1400 | 0.3937 | | 0.26 | 8.47 | 1500 | 0.3550 | | 0.26 | 9.04 | 1600 | 0.3623 | | 0.26 | 9.6 | 1700 | 0.3944 | | 0.26 | 10.17 | 1800 | 0.3669 | | 0.26 | 10.73 | 1900 | 0.3628 | | 0.217 | 11.3 | 2000 | 0.3703 | | 0.217 | 11.86 | 2100 | 0.3580 | | 0.217 | 12.43 | 2200 | 0.3318 | | 0.217 | 12.99 | 2300 | 0.3199 | | 0.217 | 13.56 | 2400 | 0.3537 | | 0.1916 | 14.12 | 2500 | 0.3198 | | 0.1916 | 14.69 | 2600 | 0.3317 | | 0.1916 | 15.25 | 2700 | 0.3333 | | 0.1916 | 15.82 | 2800 | 0.3280 | | 0.1916 | 16.38 | 2900 | 0.3269 | | 0.1737 | 16.95 | 3000 | 0.3315 | | 0.1737 | 17.51 | 3100 | 0.3346 | | 0.1737 | 18.08 | 3200 | 0.3290 | | 0.1737 | 18.64 | 3300 | 0.3317 | | 0.1737 | 19.21 | 3400 | 0.3282 | | 0.1637 | 19.77 | 3500 | 0.3294 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2