File size: 2,030 Bytes
381ed6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86bd9a4
e7eaf03
381ed6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7eaf03
381ed6b
 
 
 
 
 
e7eaf03
381ed6b
 
 
86bd9a4
 
e7eaf03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
381ed6b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: mit
base_model: gogamza/kobart-base-v2
tags:
- generated_from_trainer
model-index:
- name: qa_kor_math
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# qa_kor_math

This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co./gogamza/kobart-base-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2586

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 0.63  | 100  | 2.9907          |
| No log        | 1.26  | 200  | 0.9196          |
| No log        | 1.89  | 300  | 0.5858          |
| No log        | 2.52  | 400  | 0.4351          |
| 2.4889        | 3.14  | 500  | 0.3693          |
| 2.4889        | 3.77  | 600  | 0.3356          |
| 2.4889        | 4.4   | 700  | 0.3182          |
| 2.4889        | 5.03  | 800  | 0.3017          |
| 2.4889        | 5.66  | 900  | 0.2949          |
| 0.3483        | 6.29  | 1000 | 0.2798          |
| 0.3483        | 6.92  | 1100 | 0.2748          |
| 0.3483        | 7.55  | 1200 | 0.2695          |
| 0.3483        | 8.18  | 1300 | 0.2649          |
| 0.3483        | 8.81  | 1400 | 0.2610          |
| 0.2753        | 9.43  | 1500 | 0.2586          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2