File size: 3,464 Bytes
381ed6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86bd9a4
6efe871
381ed6b
 
 
9ea5f92
 
 
381ed6b
 
 
 
 
 
9ea5f92
381ed6b
 
 
 
e7eaf03
381ed6b
 
 
 
 
 
6efe871
381ed6b
 
 
86bd9a4
 
6efe871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
381ed6b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: mit
base_model: gogamza/kobart-base-v2
tags:
- generated_from_trainer
model-index:
- name: qa_kor_math
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# qa_kor_math

This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co./gogamza/kobart-base-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3294

## Model description

ν•œκ΅­μ–΄ μˆ˜ν•™ 문제λ₯Ό μž…λ ₯ν•˜λ©΄, 문제 μœ ν˜•κ³Ό 문제 μœ ν˜•μ— λŒ€ν•œ μ„€λͺ…, 풀이(μ½”λ“œ), 정닡이 좜λ ₯λ˜λ„λ‘ fine tuning ν–ˆμŠ΅λ‹ˆλ‹€.</br>
문제 μœ ν˜• μ’…λ₯˜λ‘œλŠ” μ‚°μˆ μ—°μ‚°, μˆœμ„œμ •ν•˜κΈ°, μ‘°ν•©ν•˜κΈ°, 수 μ°ΎκΈ°, 크기 비ꡐ, λ„ν˜•μ΄ μžˆμŠ΅λ‹ˆλ‹€.</br>
λͺ¨λΈμ΄ κ°€λ²Όμš΄ 탓인지 정확도가 λ†’μ§€λŠ” μ•Šμ•„ λ³΄μž…λ‹ˆλ‹€.</br>

## Intended uses & limitations


## Training and evaluation data

[TUNiB.ai](https://tunib.ai/)μ—μ„œ [github](https://github.com/tunib-ai/KMWP)에 κ³΅κ°œν•œ train 데이터 μ…‹μœΌλ‘œ ν•™μŠ΅ν•˜μ˜€μŠ΅λ‹ˆλ‹€.</br>

## Training procedure

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 0.56  | 100  | 3.5725          |
| No log        | 1.13  | 200  | 1.2367          |
| No log        | 1.69  | 300  | 0.7100          |
| No log        | 2.26  | 400  | 0.5420          |
| 2.4974        | 2.82  | 500  | 0.5891          |
| 2.4974        | 3.39  | 600  | 0.5370          |
| 2.4974        | 3.95  | 700  | 0.4738          |
| 2.4974        | 4.52  | 800  | 0.4985          |
| 2.4974        | 5.08  | 900  | 0.4540          |
| 0.3445        | 5.65  | 1000 | 0.4439          |
| 0.3445        | 6.21  | 1100 | 0.4261          |
| 0.3445        | 6.78  | 1200 | 0.4007          |
| 0.3445        | 7.34  | 1300 | 0.3739          |
| 0.3445        | 7.91  | 1400 | 0.3937          |
| 0.26          | 8.47  | 1500 | 0.3550          |
| 0.26          | 9.04  | 1600 | 0.3623          |
| 0.26          | 9.6   | 1700 | 0.3944          |
| 0.26          | 10.17 | 1800 | 0.3669          |
| 0.26          | 10.73 | 1900 | 0.3628          |
| 0.217         | 11.3  | 2000 | 0.3703          |
| 0.217         | 11.86 | 2100 | 0.3580          |
| 0.217         | 12.43 | 2200 | 0.3318          |
| 0.217         | 12.99 | 2300 | 0.3199          |
| 0.217         | 13.56 | 2400 | 0.3537          |
| 0.1916        | 14.12 | 2500 | 0.3198          |
| 0.1916        | 14.69 | 2600 | 0.3317          |
| 0.1916        | 15.25 | 2700 | 0.3333          |
| 0.1916        | 15.82 | 2800 | 0.3280          |
| 0.1916        | 16.38 | 2900 | 0.3269          |
| 0.1737        | 16.95 | 3000 | 0.3315          |
| 0.1737        | 17.51 | 3100 | 0.3346          |
| 0.1737        | 18.08 | 3200 | 0.3290          |
| 0.1737        | 18.64 | 3300 | 0.3317          |
| 0.1737        | 19.21 | 3400 | 0.3282          |
| 0.1637        | 19.77 | 3500 | 0.3294          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2