File size: 1,183 Bytes
772a0a4 ad9e209 c4f42b0 ad9e209 fd42da8 772a0a4 ad9e209 772a0a4 ad9e209 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
datasets:
- jcblaise/fake_news_filipino
- SEACrowd/ph_fake_news_corpus
language:
- tl
- en
base_model:
- FacebookAI/xlm-roberta-base
pipeline_tag: text-classification
tags:
- fake-news-detection
- text-classification
- tagalog
- filipino
metrics:
- accuracy
- f1
- precision
- recall
---
# Tagalog Fake News Detection Model
## Overview
This project implements a fake news detection model for Tagalog/Filipino using the XLM-RoBERTa base model with an accuracy of **95.46%**.
### Dataset
- Total Size: 18,522 samples
- Composition: 50/50 split of real and fake news
- Languages: Filipino, English
#### Dataset Split
- Train Set: ~12,968 samples
- Validation Set: ~2,784 samples
- Test Set: ~2,770 samples
### Performance Metrics (on Evaluation Set)
- Accuracy: 95.46%
- F1 Score: 95.40%
- Precision: 95.40%
- Recall: 95.40%
## Data Sources
The model was trained on a combined dataset from two primary sources:
1. [Fake News Filipino Dataset](https://huggingface.co./datasets/jcblaise/fake_news_filipino)
- 3,206 rows used
2. [Philippine Fake News Corpus](https://huggingface.co./datasets/SEACrowd/ph_fake_news_corpus)
- 15,312 rows used out of 22,458 available |