{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "b6980ac3-3bfe-40ba-91a7-04267ac81180", "metadata": {}, "outputs": [], "source": [ "# Import packages\n", "import plotly.graph_objects as go\n", "import pandas as pd\n", "from statsmodels.tsa.holtwinters import SimpleExpSmoothing" ] }, { "cell_type": "code", "execution_count": 2, "id": "4ec33fdd-f8c4-4fa8-95b2-d3a8b67f5649", "metadata": {}, "outputs": [], "source": [ "# Read in the data\n", "data = pd.read_csv(\"../coal-price-data/AirPassengers.csv\")" ] }, { "cell_type": "code", "execution_count": 4, "id": "6896611a-9d98-48fc-8dd1-350314745c89", "metadata": {}, "outputs": [], "source": [ "data[\"Month\"] = pd.to_datetime(data[\"Month\"])" ] }, { "cell_type": "code", "execution_count": 5, "id": "4b053d59-1662-43e8-ad83-d020aea490db", "metadata": {}, "outputs": [], "source": [ "# Split train and test\n", "train = data.iloc[: -int(len(data) * 0.2)]\n", "test = data.iloc[-int(len(data) * 0.2) :]" ] }, { "cell_type": "code", "execution_count": 9, "id": "0dbcbd12-0392-4b8f-a348-f2b0dc170b2b", "metadata": {}, "outputs": [], "source": [ "def plot_func(forecast: list[float], title: str) -> None:\n", " \"\"\"Function to plot the forecasts.\"\"\"\n", " fig = go.Figure()\n", " fig.add_trace(\n", " go.Scatter(x=train[\"Month\"], y=train[\"#Passengers\"], name=\"Train\")\n", " )\n", " fig.add_trace(\n", " go.Scatter(x=test[\"Month\"], y=test[\"#Passengers\"], name=\"Test\")\n", " )\n", " fig.add_trace(go.Scatter(x=test[\"Month\"], y=forecast, name=\"Forecast\"))\n", " fig.update_layout(\n", " template=\"simple_white\",\n", " font=dict(size=18),\n", " title_text=title,\n", " width=650,\n", " title_x=0.5,\n", " height=400,\n", " xaxis_title=\"Date\",\n", " yaxis_title=\"Passenger Volume\",\n", " )\n", "\n", " return fig.show()" ] }, { "cell_type": "code", "execution_count": 7, "id": "2c9e9c48-4518-4ce7-b318-cadb661c7cb2", "metadata": {}, "outputs": [], "source": [ "# Fit model and get forecasts\n", "model = SimpleExpSmoothing(train[\"#Passengers\"]).fit(optimized=True)\n", "forecasts = model.forecast(len(test))" ] }, { "cell_type": "code", "execution_count": 10, "id": "e376484d-6a51-44f3-acc8-64e6801ee236", "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "name": "Train", "type": "scatter", "x": [ "1949-01-01T00:00:00", "1949-02-01T00:00:00", "1949-03-01T00:00:00", "1949-04-01T00:00:00", "1949-05-01T00:00:00", "1949-06-01T00:00:00", "1949-07-01T00:00:00", "1949-08-01T00:00:00", "1949-09-01T00:00:00", "1949-10-01T00:00:00", "1949-11-01T00:00:00", "1949-12-01T00:00:00", "1950-01-01T00:00:00", "1950-02-01T00:00:00", "1950-03-01T00:00:00", "1950-04-01T00:00:00", "1950-05-01T00:00:00", "1950-06-01T00:00:00", "1950-07-01T00:00:00", "1950-08-01T00:00:00", "1950-09-01T00:00:00", "1950-10-01T00:00:00", "1950-11-01T00:00:00", "1950-12-01T00:00:00", "1951-01-01T00:00:00", "1951-02-01T00:00:00", "1951-03-01T00:00:00", "1951-04-01T00:00:00", "1951-05-01T00:00:00", "1951-06-01T00:00:00", "1951-07-01T00:00:00", "1951-08-01T00:00:00", "1951-09-01T00:00:00", "1951-10-01T00:00:00", "1951-11-01T00:00:00", "1951-12-01T00:00:00", "1952-01-01T00:00:00", "1952-02-01T00:00:00", "1952-03-01T00:00:00", "1952-04-01T00:00:00", "1952-05-01T00:00:00", "1952-06-01T00:00:00", "1952-07-01T00:00:00", "1952-08-01T00:00:00", "1952-09-01T00:00:00", "1952-10-01T00:00:00", "1952-11-01T00:00:00", "1952-12-01T00:00:00", "1953-01-01T00:00:00", "1953-02-01T00:00:00", "1953-03-01T00:00:00", "1953-04-01T00:00:00", "1953-05-01T00:00:00", "1953-06-01T00:00:00", "1953-07-01T00:00:00", "1953-08-01T00:00:00", "1953-09-01T00:00:00", "1953-10-01T00:00:00", "1953-11-01T00:00:00", "1953-12-01T00:00:00", "1954-01-01T00:00:00", "1954-02-01T00:00:00", "1954-03-01T00:00:00", "1954-04-01T00:00:00", "1954-05-01T00:00:00", "1954-06-01T00:00:00", "1954-07-01T00:00:00", "1954-08-01T00:00:00", "1954-09-01T00:00:00", "1954-10-01T00:00:00", "1954-11-01T00:00:00", "1954-12-01T00:00:00", "1955-01-01T00:00:00", "1955-02-01T00:00:00", "1955-03-01T00:00:00", "1955-04-01T00:00:00", "1955-05-01T00:00:00", "1955-06-01T00:00:00", "1955-07-01T00:00:00", "1955-08-01T00:00:00", "1955-09-01T00:00:00", "1955-10-01T00:00:00", "1955-11-01T00:00:00", "1955-12-01T00:00:00", "1956-01-01T00:00:00", "1956-02-01T00:00:00", "1956-03-01T00:00:00", "1956-04-01T00:00:00", "1956-05-01T00:00:00", "1956-06-01T00:00:00", "1956-07-01T00:00:00", "1956-08-01T00:00:00", "1956-09-01T00:00:00", "1956-10-01T00:00:00", "1956-11-01T00:00:00", "1956-12-01T00:00:00", "1957-01-01T00:00:00", "1957-02-01T00:00:00", "1957-03-01T00:00:00", "1957-04-01T00:00:00", "1957-05-01T00:00:00", "1957-06-01T00:00:00", "1957-07-01T00:00:00", "1957-08-01T00:00:00", "1957-09-01T00:00:00", "1957-10-01T00:00:00", "1957-11-01T00:00:00", "1957-12-01T00:00:00", "1958-01-01T00:00:00", "1958-02-01T00:00:00", "1958-03-01T00:00:00", "1958-04-01T00:00:00", "1958-05-01T00:00:00", "1958-06-01T00:00:00", "1958-07-01T00:00:00", "1958-08-01T00:00:00" ], "y": [ 112, 118, 132, 129, 121, 135, 148, 148, 136, 119, 104, 118, 115, 126, 141, 135, 125, 149, 170, 170, 158, 133, 114, 140, 145, 150, 178, 163, 172, 178, 199, 199, 184, 162, 146, 166, 171, 180, 193, 181, 183, 218, 230, 242, 209, 191, 172, 194, 196, 196, 236, 235, 229, 243, 264, 272, 237, 211, 180, 201, 204, 188, 235, 227, 234, 264, 302, 293, 259, 229, 203, 229, 242, 233, 267, 269, 270, 315, 364, 347, 312, 274, 237, 278, 284, 277, 317, 313, 318, 374, 413, 405, 355, 306, 271, 306, 315, 301, 356, 348, 355, 422, 465, 467, 404, 347, 305, 336, 340, 318, 362, 348, 363, 435, 491, 505 ] }, { "name": "Test", "type": "scatter", "x": [ "1958-09-01T00:00:00", "1958-10-01T00:00:00", "1958-11-01T00:00:00", "1958-12-01T00:00:00", "1959-01-01T00:00:00", "1959-02-01T00:00:00", "1959-03-01T00:00:00", "1959-04-01T00:00:00", "1959-05-01T00:00:00", "1959-06-01T00:00:00", "1959-07-01T00:00:00", "1959-08-01T00:00:00", "1959-09-01T00:00:00", "1959-10-01T00:00:00", "1959-11-01T00:00:00", "1959-12-01T00:00:00", "1960-01-01T00:00:00", "1960-02-01T00:00:00", "1960-03-01T00:00:00", "1960-04-01T00:00:00", "1960-05-01T00:00:00", "1960-06-01T00:00:00", "1960-07-01T00:00:00", "1960-08-01T00:00:00", "1960-09-01T00:00:00", "1960-10-01T00:00:00", "1960-11-01T00:00:00", "1960-12-01T00:00:00" ], "y": [ 404, 359, 310, 337, 360, 342, 406, 396, 420, 472, 548, 559, 463, 407, 362, 405, 417, 391, 419, 461, 472, 535, 622, 606, 508, 461, 390, 432 ] }, { "name": "Forecast", "type": "scatter", "x": [ "1958-09-01T00:00:00", "1958-10-01T00:00:00", "1958-11-01T00:00:00", "1958-12-01T00:00:00", "1959-01-01T00:00:00", "1959-02-01T00:00:00", "1959-03-01T00:00:00", "1959-04-01T00:00:00", "1959-05-01T00:00:00", "1959-06-01T00:00:00", "1959-07-01T00:00:00", "1959-08-01T00:00:00", "1959-09-01T00:00:00", "1959-10-01T00:00:00", "1959-11-01T00:00:00", "1959-12-01T00:00:00", "1960-01-01T00:00:00", "1960-02-01T00:00:00", "1960-03-01T00:00:00", "1960-04-01T00:00:00", "1960-05-01T00:00:00", "1960-06-01T00:00:00", "1960-07-01T00:00:00", "1960-08-01T00:00:00", "1960-09-01T00:00:00", "1960-10-01T00:00:00", "1960-11-01T00:00:00", "1960-12-01T00:00:00" ], "y": [ 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681, 504.9285909906681 ] } ], "layout": { "font": { "size": 18 }, "height": 400, "template": { "data": { "bar": [ { "error_x": { "color": "rgb(36,36,36)" }, "error_y": { "color": "rgb(36,36,36)" }, "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "baxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "line": { "color": "white", "width": 0.6 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "rgb(237,237,237)" }, "line": { "color": "white" } }, "header": { "fill": { "color": "rgb(217,217,217)" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "colorscale": { "diverging": [ [ 0, "rgb(103,0,31)" ], [ 0.1, "rgb(178,24,43)" ], [ 0.2, "rgb(214,96,77)" ], [ 0.3, "rgb(244,165,130)" ], [ 0.4, "rgb(253,219,199)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(209,229,240)" ], [ 0.7, "rgb(146,197,222)" ], [ 0.8, "rgb(67,147,195)" ], [ 0.9, "rgb(33,102,172)" ], [ 1, "rgb(5,48,97)" ] ], "sequential": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "sequentialminus": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ] }, "colorway": [ "#1F77B4", "#FF7F0E", "#2CA02C", "#D62728", "#9467BD", "#8C564B", "#E377C2", "#7F7F7F", "#BCBD22", "#17BECF" ], "font": { "color": "rgb(36,36,36)" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "white", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "white", "polar": { "angularaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "radialaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "scene": { "xaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "zaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } }, "shapedefaults": { "fillcolor": "black", "line": { "width": 0 }, "opacity": 0.3 }, "ternary": { "aaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "baxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "caxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } } }, "title": { "text": "Simple Exponential Smoothing", "x": 0.5 }, "width": 650, "xaxis": { "autorange": true, "range": [ "1949-01-01", "1960-12-01" ], "title": { "text": "Date" }, "type": "date" }, "yaxis": { "autorange": true, "range": [ 75.22222222222223, 650.7777777777778 ], "title": { "text": "Passenger Volume" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2AAAAGQCAYAAADInwOUAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQfcjeX/xz9kr4QkZVNWZIUk2UoysqPskVVKyM6mKPSzMsqshMjOzIqs7JGSUZGRGcL//7mf7qfznOec59xnn/Ocz/V6eVXONd/XfU7X5/5+r+83wb179+5BRQREQAREQAREQAREQAREQAREwO8EEkiA+Z2xBhABERABERABERABERABERABg4AEmB4EERABERABERABERABERABEQgQAQmwAIHWMCIgAiIgAiIgAiIgAiIgAiIgAaZnQAREQAREQAREQAREQAREQAQCREACLECgNYwIiIAIiIAIiIAIiIAIiIAISIDpGRABERABERABERABERABERCBABGQAAsQaA0jAiIgAiIgAiIgAiIgAiIgAhJgegZEQAREQAREQAREQAREQAREIEAEJMACBFrDiIAIiIAIiIAIiIAIiIAIiIAEmJ4BERABERABERABERABERABEQgQAQmwAIHWMCIgAiIgAiIgAiIgAiIgAiIgAaZnQAREQAREQAREQAREQAREQAQCREACLECgNYwIiIAIiIAIiIAIiIAIiIAISIDpGRABERABERABERABERABERCBABGQAAsQaA0jAiIgAiIgAiIgAiIgAiIgAhJgegZEQAREQAREQAREQAREQAREIEAEJMACBFrDiIAIiIAIiIAIiIAIiIAIiIAEmJ4BERABERABERABERABERABEQgQAQmwAIHWMCIgAiIgAiIgAiIgAiIgAiIgAaZnQAREQAREQAREQAREQAREQAQCREACLECgNYwIiIAIiIAIiIAIiIAIiIAISIDpGRABERABERABERABERABERCBABGQAAsQaA0jAiIgAiIgAiIgAiIgAiIgAhJgegZEQAREQAREQAREQAREQAREIEAEJMACBFrDiIAIiIAIiIAIiIAIiIAIiIAEmJ4BERABERABERABERABERABEQgQAQmwAIHWMCIgAiIgAiIgAiIgAiIgAiIgAaZnQAREQAREQAREQAREQAREQAQCREACLECgNYwIiIAIiIAIiIAIiIAIiIAISIDpGRABEQhrAvPnz0f37t1Ru3ZtDBgwAMmTJw/r9Wjy8ZOAntPg7+v27dvRuHFjFC1aFOPHj0e6dOmCPynNQAREICIJSIBF5LZr0fGRwD///INdu3bh66+/xtq1a3H27FljmWnTpkWePHlQokQJPPfccyhQoACSJEkSA4F5MMmSJQsmTZqE3Llzhw2iYB5sR40aZRzkrJbZs2cb+6ASugT89V3w1XN65coVrFmzBt988w22bNmCmzdvGjCzZs1qfM+feeYZlCtXDo888ggSJkwYuqCDMDNvBZi/no0goNCQIiACQSYgARbkDdDwIuALAidPnkS/fv3w3XffueyO4oqiIXv27NF1w/lg4auDrUtwDipIgHlCLThtrB6+/fVd8PY5vXfvHtatW4fevXtHv1yJi2SjRo3Qq1cvJE2aNDjAAzjqhQsX0L59e+zcuRNxveSw+gw4m7q/no0AotJQIiACIUJAAixENkLTEAFPCdDS1a1bN2zevBk5c+Y0/r1kyZJInTq10eXVq1fx008/YfXq1ZgzZ47x9+Fm5YqLjbcHW0+5s50pwHj469q1qzddqa2fCXh7+PZ2et4+p7R2de7cGZcuXUK1atUMwcGXKbRm3717FxQh+/fvx7x584zv+osvvhgxLrmBEmDePgNqLwIiIAImAQkwPQsiEOYEpk2bhiFDhuCJJ57AmDFj8Oijjzpd0fXr140DGt2UKNbiQ/H2YOsNAwkwb+gFtm04CzC6Hb799tuG62Hz5s2Nf7d3I7alSYv4smXL0LRp04i4EykBFtjvkkYTARHwnoAEmPcM1YMIBI3AjRs3DNfDBQsWGG/EI9EKIwEWtMcvrAYOZwF27NgxtGnTBhRWukcY+7GTAAurr6ImKwIiAEACTI+BCIQxAV8JsLgOp7YCh2Lv4MGDxiGQ983oDkU3qIYNG6JevXpIkSIFaGVbsWIFvvjiC+zZswe3b99G4cKF0aJFC1SpUgWJEiWKQdx+bK7pyy+/xOLFi/Hrr78iY8aMRv+805IhQ4ZYu2VFgJ0+fdrok/PiYTZx4sTGnJo0aYLKlSvHaU2I6/Hw1AJm607Wv39/IzJbggQJYg1l1uO6ad1kkAUW2zWzPdc3a9YsrFq1yrgfZL8njtbAO0VkYduOAVvKli0bHSnOPoiD7fM2fPhw1KpVy7h3M3PmTHz77beGKxy50vLiaK9t5+HuntgfsjnOpk2b8Omnn2Lbtm1GwInSpUsbz1mpUqWiedrO2dle2kbQjOu7QHfepUuXGuMeOXLE4MfCe1ZPPvkkXn75ZVStWtX4HtgXK8+ps/n5QoDZ7x3dGG2/pxz7qaeeQuvWrQ2O5Gnukfld5DorVaqEtm3bIl++fE6/Go5+A/Lnz288LzVr1owz+qC7bU2uziZjG1jIfm/ZhkGL+FtFxvyt4e8BxW7mzJljdWn1d5LRWPm88jeHf/idZJAUrp+/OQ888IBTdhTZU6ZMif4um3OiS+n//vc/43dXIjyM/6etqYvAvwQkwPQoiEAYE7h165bhfshDdJkyZYw7SZ6EVrZysGDo5lSpUmHDhg0OifHwWb58eWMOx48fj1WHomfw4MHGIcRWbJhj80D37LPPYvr06dGR3Ww7yZs3L0aPHh0rQmNcB1uKDLpiUThSLDoqPDDzwJQ+fXq3nwRPBRjnxXn36NHDiFL58ccfG4df20KGHTp0wO+//46xY8cabqNmMdfMqJYPPfSQ0ReFrn3h52TOQ5xtYcTMGTNmYOTIkQ7bsS6FDO8cpUyZMrqp7SG+S5cuxt1CRuOzL9xrft6yZctYgtvTPbEVYH379jXEw/fffx9rbIqEoUOHokaNGsZnvhRgtkLI2cNSpEgRvP/++8aB27Z4I8B4KG/Xrp0h+t58803j392NcGjLoXr16saLFGffUwbvoNjkc2dGWbRdCwW+7QsB289+/vlnIy0EI7I6KhREI0aMQPHixWN97ElbTwQYxTsFzeTJkx0GNOFvDdeXI0eOGHO08jvJ3xP+ljHQkSN2FSpUMH6z7X9v+L1YtGiRETjFUTvbiUiAuf1TrQYiEHIEJMBCbks0IRFwj8Dy5csN10MewBl8g2+n+TbeDMJhpTcrBwv2w8MtRQHF1oMPPmgcFL766ivjkG8KAB72eXDnQYTigvdXJk6caPzhW3C+xWWIbLOYY5v98+Bft25d4y4bLSo//vijIaAOHTpkWNn69OkT415LXAdb04J07do1vP7666hfv74x7zt37mDfvn3GQYgHRc6XLpz21jlX7DwVYOyXcxo0aJBxJ+/pp582xJAplGw/o5Dhgdt2braHTrah0OGBkmvjPqxfvx60jPHNO58NWjVs2/Otf8+ePY1D/DvvvIOXXnrJ2CuOy7bcT0dt7cUM7xFybrSK8Hmz3etMmTLhk08+weOPPx4Do6d7YivA2CFfCPBZJ7tkyZLhjz/+MBhybXz+x40bZ4hT++fMVQ6ouL4LFCx8jmkl4Rh82UGGfBFCSyCfBz5PtKBQKDnaM0/y1bF/ikpaGiluaRHms0z+cd0FswXvaO8YsIfWLopsW35mO/6edOzY0WDNcX/55Rfj+0fh+9prrxnPju3458+fN4IA0UpDS+pbb71l7D8ZnTp1yhB0CxcuNF6i8KWD7T1Ub9q664LI9XE9fBn06quv4rHHHjOWvHv3bkMAmULbfg/d+Z3k7xh/r/g7xt8bpgZ59913jRdB7733nmHRty223wu25bzM36ozZ84YL5L4fWJ7CTBXv8z6XARCn4AEWOjvkWYoAnES4MHqo48+MtxWbAsP5gzMQctKsWLFjEOGsyTFVg4W7ItuZ6YbnDkWD+08WNA1q2LFisbhwt7iQisOBQ5FDy0vdBGzPxjzzTgPZY5cm3io5aGEhRYyvsE2izMBxoMKD4MM3T1s2DDUqVMnlpvfgQMHjEM8LXs8WNtbLVw9et6GoScXCsO9e/caIorBFVj4Zp59U4gy7LitFYqfm2vmAZmi4+GHH441Ve4HxRv3fcKECSBfFh60eajmYdMZl40bN6JTp04GF1sRZXuIpysVD9isY1t4GKZI/+GHHwxLEF3OzOLNntgesnnwpwCwFx/mwZlcKVYoHOyfM28EmKvngcKDzxNz7ZG5rZXDGwsYx6U7Lp8Pe8sSxQzFoPk9p+ucoxcJVvbu8OHDaNWqlWF1dcaYAp11OKb9GhllldZJPpd8fu1/B/hbwZcpFMn2ItWbtu4KML4c+OCDD4ycfPauv7bfLYp4vpiw8gyZ7Zz9TtLCxd9p/sbxe80XJGaKANvvhaMXLhzf6hpdPaP6XAREIDQISICFxj5oFiLgFQG6lNE18MMPPzRcixwV/s+eh2YeEO3vIFgRYHG9uXdlCbK/f0IxZOVQY9ahOxTd9eh2RqsV3yybxdnBlveCmjVrZog9zs/2IGW2tZ0XD1u02rlTvBVgHMv2zTetHKYFkZYDR4dYtrFymHcmem0P0PZWInPttqKaB2Y+Nyxx7aPZllZRHi5p2aNlkULOLN7siZUDKA+yFJe00NiLP6tBOKzWc/ScmAKQn9mnerCyZ66evcuXLxupJExLiKP6tC7TckM3Q1shZmXvrDB2tkbb76gjC485V1Ok8vmmmx7FkDdt2a+VebOelb2lJZPPOzlyD23dEL39naTwpIimQLUVd+b3Ilu2bE5fBFldo6tnSJ+LgAiEBgEJsNDYB81CBHxCgG9ZL168aLjr0arCt+X8J93JzGLv7ubqYGLl4OhvAcZ18Y01rVT20R6dzY8WEN7touCkpcZRkAuu3Zy7rdCwuhmu1m2lH66NLkUULaY1iQdn3kGhe5ijYmVPGMyA7mK8V0LLpSl6eaik1cz+Lbz9OGa9V155xbBw0tpk5RBvy9R+r7zZEysHUG+FvqvvgsmIrpY8qDPIDP9JwUr3PPOeoW3gB7ONlT2z8rywDl+40C2Neb/ooss58N9t7w7ZW1Ks7J0Vxs4EmHlPjfe47K2Ptusy63H+pjXbm7a+FmBxiWhvBZiz9ub3gq7AAwcOdBjExcreWH1+VE8ERCD4BCTAgr8HmoEI+JUAD/i8f8F8YXPnzjXuCPEtLF2ATFHi7cHClRDxxcHY2RjODrbuWqc8CePvat1WN9b2zpezYCW2fVk5zDtjbnXOjsawcoiPS4B5sydWDqC+eM7i+i78/fffhnsoXwTEFSjB3wLM0XNFUUYhRuFOCyDF/NSpU8GgICxW9s4KY2cCJS7hYjtfR2N40zY+CDAr30kre2P190b1REAEgk9AAiz4e6AZiEBACPAiP12DPv/8c8PVjvd/TIuLBBg8yqNm5eBkZXNtBRjrO7sHYvYlATbbuL9jX/wpwChw6NbIu5YUybzvSLdcRsxjEBB+l3hPiy82WPzhgmjlWeIcaPWlqHHXfdTKIV8CrLFxt5Duk7YRZ618J539zlr5HbGyN1aeD9URAREIDQISYKGxD5qFCASEAHPS0J3M/gAR6gLMNty+/b0iZwcf04XOE8uW1c2wcnBy1ZdtSPo0adIYlhVGf+QBr1y5cg6bWzns8b4Q7wLxbqDtfahguiB6sydWDqD+FGC2AT4cpVPgRvn7DpirZ4mf27qe2j77/raAeeNG6E1brtnKs8F6Vu6ABcMFkdEhabm0dfe132ura7TyjKiOCIhA8AlIgAV/DzQDEQgIgbiicIW6ALON3McABLbCxJkYMYNN2Fv7fAnbFwLMPtky7/Qw4EhcuZasCDAzoh0tN7TaMAUAi8mlYMGC0UEQ7Jl4E4SDfTnj4s2eWDmAxiUyeLBm9D5GlLSNCmm/dmffBfPvHUX/M/sIBQHmLAqlvwWYbSCNuO5TugrC4W5be9EZVzCdUBVgZnAO5kFkrkO+iJEA8+UvtfoSgdAjIAEWenuiGYmAZQI8bPE+CqN2mWHGnTU+evSoEZWOh0SGQ37hhReiq4ayALO1EDnK7+RMjJiijcEJnFksCIDWJoZdpzsRRYk7xVsBRncxhmxnQmPT4mXrjshEygyYYR/B0ZUAo+jiQZQhr7nPjBxphrL3VRh628Ae9syccfFmT3whwOgeSCFiK0itCjAzOl5ckeoYzY7uo0z34EsXxB07dhhh/Zs2beowQIO5Bn5XmGeLuazs5+lvAcY5eBNK3pu2tmuLS8CFqgAzX5aYya9tk66be0srIX8rGOVWecDc+ZVWXREITQISYKG5L5qVCFgiYB5KGemQeYAaNGhg5MjKkCGDEbXOjIrIJKA8jPN/4o5yS4WCAKPI4N0VJhRmKHYmb2VUOd5Zo4sOhRLDtNvmlSKkuMQILS50w2Jh8lomN2ViVEYZ5KGN3Bic5Ntvv/XoUOONAIsr2TIT/vKwRbEcVyJmim7WK1++fHRqAYocCoxZs2YZoov7zmfDttgmYmaYeD43ZiJmJvbmuhg505NIehwnLi6e7om3AszWJZOJxJnnyvYOj8nH2XfBVrhSCFHMMdGzGeSG+e0oIuhC6usgHOacuEcML88/uXLlMvaM3xMKbgbaoYsxn2cW+5cOgRBgtsmUGWqdwX74UoNzPHHihPFc8PlyZN31pi3Xa7q3sm+63DKfIMe1LaEqwGzvF3L+jITIl0333Xcfzp07h2+++cb4TpvRbCXALP3vUZVEIKQJSICF9PZociIQNwHbBJ6uWDFwAO8YMPFvKOYBi2v+nDtDqjP/l32S2bgEGA/HPPANGjQoRih++7GYI40HaDNinCuW5ufuRvUzD048cJnJlikoGS7fPtmyrVDhONWqVYuelrnmuObJwzmtVBRn9iH4OT7XS+sao2I6Kkx8TYup7bysHOJdCTBP98RbAcZ5mcLTfs22Oe7iOqSb7qJmuHlbbnxpwJcHDPvvawsYk2a3bt06Osx9XPvOeTABOecSyDxg5pwYhr579+6xEkabn1OcjhgxAsWLF4+1DG/a2r60sO3YVgyHqgDjfCmuuG+bN2+OxYW/f3SlZtoDvkSTALP6C616IhC6BCTAQndvNDMRsESAlqHTp0+DdysYfvrIkSOG5cQsfKPKQzgPmfx3R/mwQsECxje+zNdFwbRq1SrjQGK+8adwdDZ3V+545MDD+7Jly4w/PMzSSsG+KbhoTahQoQJSp05tibdtJU8FmP29rzx58sQamyKJd5XoLmpvMTDXzLxBtWrVwoIFC4z9pzDgAZxClX+YTNZZoRDic0JLmS1v5h5r1KiRkSzW3oLgCwFmzsfdPfGFAOOat27darjt0l2QQixr1qzG4ZbWPgrxuL4LbE8XMFpbaDXlc8S7ddwDCmnO0V9REBmIhu60PKBzjnQpNi0inDe/P88//7zxx5Flz8reWWFsJWQ8A4EwafoXX3xhiAZyJie6w9L6SAu9s+JNW+YW494sWbLE+C7wO04ufHnDfQ5lAUYeXDutmEwXQs7c10qVKhku5kwIzZdn/H0386e5/YOlBiIgAiFDQAIsZLZCExGByCRg5VAUmWScr9qK6BQzERCB+EPAjBTJFcUVRCb+rFgrEYH4TUACLH7vr1YnAiFPQALM/S2SAHOfmVqIQDgToGdA165dDddSuizTzVVFBEQgfAlIgIXv3mnmIhAvCEiAub+NEmDuM1MLEQhlAoxyyUAbDBbEQEr333+/4S5+5coVrFy50ghgcvHixTjzA4by+jQ3ERCBmAQkwPREiIAIBJWABJj7+CXA3GemFiIQygTM30Fnc2QgDgbpYARO+0BEobwuzU0ERMAxAQkwPRkiIAJBJSAB5j5+CTD3mamFCIQyAYabZw63DRs24NChQ9ERL60EUQrldWluIiACEmB6BkRABERABERABERABERABEQgqARkAQsqfg0uAiIgAiIgAiIgAiIgAiIQSQQkwCJpt7VWERABERABERABERABERCBoBKQAAsqfg0uAiIgAiIgAiIgAiIgAiIQSQQkwCJpt7VWERABERABERABERABERCBoBKQAAsqfg0uAiIgAiIgAiIgAiIgAiIQSQQkwCJpt7VWERABERABERABERABERCBoBKQAAsqfg0uAiIgAiIgAiIgAiIgAiIQSQQkwCJpt7VWERABERABERABERABERCBoBKQAAsqfg0uAiIgAiIgAiIgAiIgAiIQSQQkwCJpt7VWERABERABERABERABERCBoBKQAAsqfg0uAiIgAiIgAiIgAiIgAiIQSQQkwCJpt7VWERABERABERABERABERCBoBKQAAsqfg0uAiIgAiIgAiIgAiIgAiIQSQQkwCJpt7VWERABERABERABERABERCBoBKQAAsqfg0uAiIgAiIgAiIgAiIgAiIQSQQkwCJpt7VWERABERABERABERABERCBoBKQAAsqfg0uAiIgAiIgAiIgAiIgAiIQSQQkwCJpt7VWERABERABERABERABERCBoBKQAAsqfg0uAiIgAiIgAiIgAiIgAiIQSQQkwCJpt7VWERABERABERABERABERCBoBKQAAsqfg0uAiIgAiIgAiIgAiIgAiIQSQQkwCJpt7VWERABERABERABERABERCBoBKQAAsqfg0uAiIgAiIgAiIgAiIgAiIQSQQkwCJpt7VWERABERABERABERABERCBoBKQAAsqfg0uAiIgAiIgAiIgAiIgAiIQSQQkwCJpt7VWERABERABERABERABERCBoBKQAAsqfg0uAiIgAiIgAiIgAiIgAiIQSQQkwCJpt7VWERABERABERABERABERCBoBKQAAsqfg0uAiIgAiIgAiIgAiIgAiIQSQQkwCJpt7VWERABERABERABERABERCBoBKQAAsqfg0uAiIgAiIgAiIgAiIgAiIQSQQkwCJpt7VWERABERABERABERABERCBoBKQAAsqfg0uAiIgAiIgAiIgAiIgAiIQSQQkwCJpt7VWERABERABERABERABERCBoBKQAAsqfg0uAiIgAiIgAiIgAiIgAiIQSQQkwCJpt7VWERABERABERABERABERCBoBKQAAsqfg0uAiIgAiIgAiIgAiIgAiIQSQQkwCJpt7VWERABERABERABERABERCBoBKQAAsqfg0uAiIgAiIgAiIgAiIgAiIQSQQkwCJpt7VWERABERABERABERABERCBoBKQAAsqfg0uAiIgAiIgAiIgAiIgAiIQSQQkwCJpt7VWERABERABERABERABERCBoBKQAAsqfg0uAiIgAiIgAiIgAiIgAiIQSQQkwCJpt7VWERABERABERABERABERCBoBKQAPMD/jx58uDo0aN+6FldioAIiIAIiIAIiIAIiIAIhDMBCTA/7J4EmB+gqksREAEREAEREAEREAERiAcEJMD8sIkSYH6Aqi5FQAREQAREQAREQAREIB4QkADzwyZKgPkBqroUAREQAREQAREQAREQgXhAQALMD5soAeYHqOpSBERABERABERABERABOIBAQkwP2yiBJgfoKpLERABERABERABERABEYgHBCTA/LCJEmB+gKouRUAEREAEREAEREAERCAeEJAA88MmSoD5Aaq6FAEREAEREAEREAEREIF4QEACzA+bKAHmB6jqUgREQAREQAREQAREQATiAQEJMD9sogSYH6CqSxEQAREQAREQAREQARGIBwTcFmCnT5/G0qVLsWnTJly/fh1ZsmRBnz59kCxZMixatAh//fUXatasiYwZM8YDPJ4tQQLMM25qJQIiIAIiIAIiIAIeE7h1FTiyHLj9N1CkicfdqKEI+JuAZQF29+5dfP3114bYunnzZvS8ihYtivHjxyNdunSYOXMmBgwYgHHjxqFq1ar+nnvI9i8BFrJbo4mJgAiIgAiIgAjEVwLH1wKf1YpaXZ3JQKH68XWlWleYE7AswLZt24YOHTogderU6NmzJ3LkyIEePXrgvvvuixZge/bsQbNmzVCvXj288847SJQoUZjj8Wz6EmCecVMrERABERABERABEfCYwI5pwOI3oponTg602wSkz+Vxd/G94fz589G9e3dLy2zfvj26du1qqW5clY4dO4Y2bdqgePHihtEmefLkXvcZjh1YEmC3bt3CkCFD8MUXXxhiq1y5crhw4QK4GSymBezkyZNo164dMmXKhNGjRyNNmjR+YUJr3M6dOzFnzhxs3boVZ8+eRe7cuY15ZM+ePcaYnNOUKVOwZMkSXLp0CYULF0aLFi1QpUqVWAKR61y1ahWmTZsGism0adOievXqxoOSOXNmy2uRALOMShVFQAREQAREQAREwDcEvu0PbBwNJLsf+PsvIGN+oM1aIFEy3/Qfz3qRAAvehloSYBQuHTt2xLVr1wyRQ4HlSIA5+jtfL41zGDNmDKZOnRqja95FmzRpkiHEzHL8+HHDake1bVsSJ06Mbt26Gda6BAkSGB/9888/mDx5MkaNGhVrygULFjTG5BhWigSYFUqqIwIiIAIiIAIiIAI+JPBlc2D/fKDGh8D3E4GzB4HiLYAXR/twkPjb1Y0bN9CvXz+cOHEi2rgSf1cb3JVZEmBWxZa/Bdi9e/cMa9bw4cNRsmRJvPXWWyhQoACSJEkSiyIFFa1wtGb16tULL7/8MpImTYqjR4+id+/euHLlCiZOnIisWbMabQ8fPoxWrVohW7ZsGDhwoGFJ41033mujKOvSpYthCTMFW1zbJgEW3Idao4uACIiACIiACEQggUnlgTM7gWZLgNSZgPFPA//cBBrMBPLViEAg7i05LgG2fft2NG7cGLNmzcLt27cNgfb999+jbt26ePfdd/HVV1+BFjUaPfi56UXWsmXLGAYMUyvwHG+6NJp988zOYH6mJxqNKp06dUK1atWQMGFC9xYT4rUtCbCrV68a971+/vlnTJgwwQDpSGwROkXMU0895Re/zl9//RVt27Y1IiyOHDkyzkiLnB+tX6xL98mUKVNGbwWjOFLo761tAAAgAElEQVRQ2QYL4UNDYUZRVrZs2ei6tP7xAaHwsupWKQEW4k+9picCIiACIiACIhD/CAzPDty4CLy5H7j/UWDHdGBxFyBJKqDjNiDNI/FvzT5ckRUBRq8wGi0oslhq165taIRhw4ZhwYIFsWaTN29efPzxx9EGj7gEWIYMGfDnn3/G6CNVqlSG2CtVqpQPVxr8riwJMFqe6N73/vvvG4Dr1KmDixcvxrgD9sADD2D27Nno37+/Yb5s0sT34T+diSRHGM1LfnwwqJ5ti6PPaOVatmyZsU4GGLEtcX3maGwJsOA/2JqBCIiACIiACIhABBFgCPoh/wqs/n/9t/DPagLH1wEvTwaeCH5UxLWHz2Hi+p8CvjHPPf4g2pWLOyCJFQGWM2dOw+JVunRphx5o5sLMeA0MykejB1NUscQlwGz7ZiA/pryiEaRBgwaG15sVL7SAg/VwQEsCjH2b96moTKl0y5QpYwBl+d///oddu3YZ0RF5P8xW6Xo4L4fNTCHEu1vr1q3Dli1bDDfB/Pnzo3nz5njhhReiHwbTnEl3RQpG22IGC6lYsaKxsa58XinK5s6dG+uOGfukELUvtADS1VFFBERABERABERABEQgAAR+/xGYUBZIlxPovOu/AVf1AzZ9CFTsA5R9OwATiXuIz384ie7zfgz4POoXz4IRdQvFOa4VATZjxgyH1ihe/aEWYDC73bt34/z586DnGgvjLvAajysBRkNOiRIloudoeuClSJHCL551Ad8EmwEtCzC2YcRBKlBGHXRU6O/JYBVUxb4u5kPhyLxpjkVByCiMVM1xCTB79e1KgNHyRndF+yAfHJch9+0LHzwJMF8/AepPBERABERABERABJwQOLgY+LwJkLM88OrC/ypt/wRY8hZQrBlQ46Og4zt35SaOnbsa8HlkTJ0MuR787zqOowlYEWD2Ion9UGzR+23FihUO12Ubwj4uC5h93+Z82Gl8C1nvlgAjAFrAGP6dFiFTiDm7aOfLp8vchL179xpujoUKFTJyB9DEeejQIeOe1/79+zF9+nQj1HygLGCO1igXRF/uvPoSAREQAREQAREQARcENo8FVvYGijWPioJoliMrgNn1gVwVgabzhTEOAp4KMOqCvn374pVXXkHDhg0Nbzje3bp8+bJxXck24IYEWNQGuC3AgvXk0rQ5YsQIIz+XmXfMdi7r1683AoCYgTXMe158EEyzp1nfDBbCyIjm/TC6N65evTo6yIhZl/ffPvjgA0PVO7ofJgEWrCdC44qACIiACIiACIjAvwSWvA1snwxUHgCU+TcZMz86ewD4X2kgw2NAx+3C5QcBxjM0rwUxUF/69OmjR3AktiTAwkyAcboMCc/7ZczXxSgstsWMbGj6pioKon5jREAEREAEREAERCBCCMysCxxbBdSbDhSo/d+ib98ABmeKSsbc+48IgeHZMj21gI0dOxafffaZkbaJMSJYTp06hXnz5hl5e1u0aBEdcl4CLAwFmJmr6+GHHzZyez3xxBOGC+K+ffsMF0Q+OGYAEEd5wJgv7MiRI4aZ1EoesOvXrxvulsoD5tkXWa1EQAREQAREQAREICAExhUH/jwKtFkHZC4Sc8hhWYG//wLeOQ6k+M9CE5B5hdEgngoweqfRC42pm2wL01bxvN2oUSMJMLvnwC0XRAqSzZs3G3euTp8+jZ9+chxGk8D79OljJGHzZaE7IAXRoEGDovMPmP0zyfLgwYPx0ksvRYepNCM30uXQvnTv3h1MDmeGtKRgo2WNYsu+2OcwcLUm3QFzRUifi4AIiIAIiIAIiIAPCQx4ALh3F+j+C5D8gZgdjy8D/LHPsTjz4RTCvStPBRjP5zt27DBSVVGMMYEyrwBVqlTJEF66Axb7ybAswJiEmaKFISZdlaJFizq8p+WqnZXPafGinynF0rZt24zM2Nxg3vPKly9frBwBDDnPyIwMW09lzgAdNIVWqVLFiJZoW27dugW6MjID94EDB6KzeLPvzJkzW5meUUcCzDIqVRQBERABERABERAB7whcPgOMygckTQP0PBm7rzkNgcPLgAYzgXw1vBtLrUXABwQsCTDTnY9BKCiuXn31VaRLl87p8LRG8Y4WXf4isUiAReKua80iIAIiIAIiIAJBIfDrFmBqNSDTE0C7jbGnsPQdYNtEoNpQoNTrQZmiBhUBWwKWBBgtRx07dsSJEyfwySef4PHHHxfFOAhIgOnxEAEREAEREAEREIEAEdgzB1jQLsq6RSuXfdk8BljZByjVHqg2LECT0jAi4JyAJQFmRixhN45CwAtwTAISYHoiREAEREAEREAERCBABNYNA9YNBUp3BKoOjj3o/gXAl82AvC8CDWcFaFIaRgS8FGAMvsGgGgy+wRj/DLKh4pyABJieDhEQAREQAREQAREIEIEFbYE9c4Hq7wMlWsce9PQOYHIF4OEngbbrAzQpDSMCXgowNjezXH/00Ud44YUXxDQOAhJgejxEQAREQAREQAREIEAEeP+L98CazANyV4496NWzwPt5gBTpgHd+DtCkNIwI+ECA/f7773j99deRIkUKI1R7xowZxdUJAQkwPRoiIAIiIAIiIAIiECACH+QFrvwGdPwByJAn9qD37gED0wN37wC9fgcSJw/QxDSMCDgmYOkOGJsyxv/06dONhMepUqXC1atXnTL1Zxj6cNhICbBw2CXNUQREQAREQAREIOwJUFS9929k7r4XgIT3OV7SmCLAheNAx+1AhsfCftlaQHgTsCzAmHurc+fOsbJcO1q+BFgeHD16NLyfDM1eBERABERABERABEKdwJ9HgXHFgdQPA28dcj7bz2oCx9cBTb4CclcK9VVpfvGcgCUBZmbGXrBgAVq1amXkAXvwwQdjJTKO56wsL08WMMuoVFEEREAEREAERCBUCDBfVrZSQIE6oTIj1/M4tgqYWRfI9jTQfJnz+l93BHbNAGp8BBRr5rpf1RABPxKwJMDMMPR0O1QURNe7IQHmmpFqiIAIiIAIiIAIhAiB29eB2Q2AnzdETeiVeUAeB8EsQmS6Maax/RNgyVtA4UZA7QnOZ7h+OLB2CFD2baBin1BcieYUQQTcEmDkojxgrp8OCTDXjFRDBERABERABEQgBAjcvAzMqA2c+uG/yTgL5x4C0401hRW9gC3jgOd6As/1cD7D3bOBhe2BQvWBOpNDcSWaUwQRsCTAbt26ZQTf2LBhAyZNmoTcuXNHECL3lyoB5j4ztRABERABERABEQgwgb8vAZ/WBH7bDaRID+SqCOz9AijzBlB5QIAn4+FwnzcBDi4G6kwCCjVw3skv3wHTX3TtqujhNNRMBNwhYEmAscPvvvsObdu2Ra9evdC4cWMkSJDAnXEiqq4EWERttxYrAiIgAiIgAuFH4MZFYEplgEEs7s8CNPsGOLUd+KpV1B2wetPCY00TnwV+2wO0WAFkLeV8zhd/AT4qHLXWN/eFx9o0y3hLwJIAu3v3LpgHbPDgwTh+/DhGjBiBRx55xCmUhAkTIk2aNOA/I7FIgEXirmvNIiACIiACIhBGBI6uBGbVA9JmBVqujIoieHJblCh7tATQ6tvwWMzQR4GbV4C3jwCpHop7zv3vj/q8/1/hsTY/z3L+/Pno3r27pVHat2+Prl27WqprpdL27dsNg87s2bNRokQJK03iVR1LAswMwrFz505Li1cYeoWht/SgqJIIiIAIiIAIiEBwCPDeFO9PFW8JvDgqag6XTwOj8gOpMgJvh0E6HVrxhmcHEiQE+l10zdFM2EwLGC1hEV4kwIL3AFgSYJcuXcLAgQNx8uRJSzPNkiUL+vTpg7Rp01qqH98qyQIW33ZU6xEBERABERCBeEZgcRdgx3Sg2lCg1OtRi7t3DxiYHmBy477ngYSJQnvRZ3YCk8oDGfIAHW2CiDib9SeVotwsGa6eYetVYhAw006dOHHC70H3ZAG7x2+bii8JSID5kqb6EgEREAEREAER8DmB6dWBXzbGDjnPe1K8L9VpB5A+xIOu7V8AfNkMyF0ZaDLPNaJ5LYB9X7kO2OG6p3hZw5UAu3z5MubMmYMvvvgCv/76KzJmzIgWLVrglVdeQbJkyaKZ/Pnnn0a9uXPn4uzZs0a9mjVrokGDBsiaNSuYV9iR62Pt2rUxYMAAJE+ePF7ytV2UJQtYvKfg4wVKgPkYqLoTAREQAREQARHwLYEPHgeu/A503gWky/lf34wUyIiBTRcAuSr4dkxf97ZxNPBtf6BEa4Ch812VVf2ATR9G5QFjPrBgFAYMObQ08CM/XAjIWz3OceMSYBRS3bp1w+bNm2P1Ua9ePcPzjcLp/PnzRj0G77MvpsBatmyZBNg9WcB8/iWQAPM5UnUoAiIgAiIgAiLgKwK3rgFDMkf1Zh+Q4usOwK6ZwEtjgKKv+WpE//SzdiiwflhMN8q4RjKTNhdrDtT40D9zctXrrhnA1x1d1fL950WaADU/9kiA/fPPPxg9erRh+erRoweqVauGlClT4sqVK5g1axamTJlipKkqUqQI1q9fj1atWmHs2LGoVKkSEiVKZNSjy+Hu3bvBYB4UanJBtCDAmAds3759uHnzpqUHImnSpChYsCCSJEliqX58qyQBFt92VOsRAREQAREQgXhEgHm/JpYDMjwGdNwec2HrhgHrhkZZiGgpCuUy6TngzC7g1YVAzvKuZ3pkBTC7flS+s6bzXdf3R40wtIAxEjqFE4VXmzZtYqSiosWrXbt2qFy5svHZ1q1b0bRpU/Tv3x+0jDnTAhJgFgSYoiC69w2UAHOPl2qLgAiIgAiIgAgEkMC+ecC8llEuaQ1nxxx49yxg4etAofpAnckBnJSbQ927CwzKCNy5DfQ4ASSzEPjt7AHgf6WtB+1wc0rhXt2ZC+KxY8cMcRVXMD4zTP21a9cwaNAgzJs3zwjGlzdvXjz77LN47rnnkCtXrugUVRJgFgTY1atXwVCVvHznrNA3lLBffPFFw/pVp04dpEqVKtyfRY/mLwHmETY1EgEREAEREAERCAQBuu3Rfa9MF6DyezFH/HkD8GkNIGtpoMXyQMzGszHOHQI+LhmVv+ytQ9b6uH0DGJwJSJQM6P2HtTYRVMsXAoy46LJIz7lNmzZhy5Ythushcwp36dIFLVu2NNwSJcAsCDArzx4Vb79+/UBr2ciRI5E+fXorzeJlHQmweLmtWpQIiIAIiIAIxA8CX7UG9n4B1BwHFGkac02MgMhIiGkeAboeCN317v0S+KoV8FhVoPEX1uc5LCvw91/AO8eBFJF7VnUEzJkAM10QX375ZTRp0sQ6639r0pBDjXDo0CFMmDABTFdlCrAZM2agVKlSbvcZ7g18GgWREU/atm1rREJp1KhRuLPxeP4SYB6jU0MREAEREAEREAF/EzDvTtHCRUuXbbn7D/Dev8IklHOBreoLbPoIeLYbUKG3dWLjywB/7AParAMyF7HeLgJqOhNgZhCOhQsXomvXrqhSpQpSp05tWLXoAbdx40akSZPG+PslS5bgjz/+wAsvvGCEn0+YMCFopJk4cSJWr14dLcB27txpiDkG7Hj99ddjhLGPANTwqQAzFXLOnDmNxM0pUqSIBIax1igBFpHbrkWLgAiIgAiIQHgQGPIIcOsq0O0nIGWG2HMelQ+4fAZ440cgbbbQXNOMOsBPq4H6nwH5a1qf45yGwOFlQIOZQL4a1ttFQE1Pw9ATzfDhw43rR7yy5CjHF+tQvLVu3dpwQaRI69ixo+GeaBblAfPwITODdbD5+PHjkS5dOg97ctzMfDCYwM1RKVq0aKxxeWGQ4TGpyC9duoTChQsbSeOo0vkA2BZGe1y1ahWmTZuGPXv2GJcHq1evblw8zJz533CtFlYkAWYBkqqIgAiIgAiIgAgEnsDVs8D7eYAkqYB3Tzsef2pV4NetQLNvgOxlAz9HKyOaroRddgMP5LDSIqrO0neAbROth6633nPY13SViPn69ev48ssvDZF14MABJE6cGE899RQonCpUqGBYxRhyfvHixcYfnqVZePamtYuREm2jIu7fvx8ffvihcVeMYe3pPUdRFglR1H1qAeOFOyrb/PnzG/kCaI70ZXFXgB0/fhwdOnQAo7fYFj4wTBLXrFmz6FCaNK9OnjwZo0aNijVlBhUZM2aM4bNqpUiAWaGkOiIgAiIgAiIgAgEncGIzMO154JFiQOs1joc374jVGg882TjgU3Q5oCkiEycHev3usnqMCpvHACv7AKXaA9WGuddWtUXARwQsCTArecBMSxNFz9tvvx0rT4Av5msKMPY1YMAAI5Gbs2L6q9Ka1atXL/DiIPOTHT16FL179zYUOv1Rs2bNanRx+PBhww81W7Zshvtk9uzZjbxnM2fONEQZI7fY5z5wNrYEmC92W32IgAiIgAiIgAj4nMDOz4BFnYBCDYA6kxx3v3og8N37QPmeQLkePp+C1x0e+xaY+bJnkRr3LwC+bAbkfRFoOMvrqagDEfCEgCUB5k4eMMb5Hzx4sHHxztfFHQHGOdP6xXkMGTLEMG2aZenSpYagGjduHKpWrWr8Nc2pFGYUZWXL/mdup9sifVYTJEhg2aonAebrnVd/IiACIiACIhD6BK7/cx37/9wf2hPdMR3YOw8o1hR4ooHjuR5dAWwaC+SpHBWqPtQK85j9MD3q7tdTrd2b3fljwOI3gERJgCbuJWMukamEe2Optgg4IWBJgFnJA8b7VPTxLFasmN98N90RYGbSOPqldurUKcbyHX1GK9eyZcswadIk5MgR05c4rs8ccZUA0/dNBERABERABOIvgeu37uDVqd+j5/P5UCzbA9ELPXzxMOouqht/Fx7hK9v72t4IJ6Dl+4qAJQHmq8G87cfRHTAGyqDFiu6D+fLli77TZeYXMKOy2I5Nd8l27dqhYsWKhnXL1aVDirK5c+ca4ix37twulyEB5hKRKoiACIiACIhA2BJ4beo2rD9yDnkzpcbyN56NXsfJKyfRb3O/0F7X6R0AExIzBHuS/7yDYkyan7MeExY/Wjz01hO9hiejgom4W37/Efj7MpAxL5DCQRRIJ/1NrTrV3ZFUXwQcEgh7AWauive7hg4diho1okKKxiXATJfKkiVLWhJgdE+ku6IjAeYoId33339v3DVTEQEREAEREAERiF8EBizej2mbfsH9yRNjcadnkDVdGKXcuXsHGJgBuHcX6H0WSJTU8eaYucAS3gf0OQ8kSBA6m3jnFjDo32suvc8B9yV2f25rBgEbRgIl2wHPD3e/vVqIgJcEwkqAOVorg2msXLkSw4YNQ6FChaLvaQXKAsbcZ/aFFjkJMC+fTDUXAREQAREQgRAj8MUPJ/HOvB+RMAHwedvSKJHdt+l2/L7cC8eBMUWA+x8F3nRxV21kbuDaOaDrQSCN9VQ8fl/DmZ3ApPLAQwWB9ps8G+6nNcCM2kCmQkC77zzrQ61EwAsCsQQYs1pfvnzZyG7taWHWa4ag5z8DURjxcMSIEfj222+jrVTmPa+GDRsa0QttCz+jyyIjI5r3w3jPyzZDt1n/3r17+OCDD7BixQqH98McrU8uiIHYdY0hAiIgAiIgAoEjsPX4BTSevAV37wH9XyqAZk9nD9zgvhrp6CpgVl0g53PAq1/H3evkClFuiC1XAllK+moG3vez81NgUWegcCOg9gTP+vvnb2Bwpqi2PU955sbo2chqJQIGgVgCzJ2Ih84YOkqI7E/eDJP/3nvvgQndmAA6U6ZMUBREfxJX3yIgAiIgAiIQOQQuXLuFssPX4NqtO6hX7FGMrFc4PBe/dTywvAdQojVQ/f2418BQ7QzZ/vJk4In6obPepd2AbZOicngxl5enxRSYr3wJ5KniaS9qJwIeEYglwBh2nXmwGKjC08KExX369AEDZPiy7NixA+vXr0edOnXw6KOPgpEXOV8GyGCi5AYNGqBnz55GFEZHecD490eOHEHfvn0t5QFjxu85c+YoD5gvN1F9iYAIiIAIiECYEVh98Cxafrod+R5OjWVd/gu6EWbLAJa8BWz/JOreE+8/xVWYrJhJiyv2Bcq+FTpLnVoV+HUr0GwJkP0Zz+e1sjeweSzwzJtApf6e96OWIuABgbC6A2be63K0zrx58xr3v2yjFDIpNHOB0eXQvnTv3h0tW7aMjppIwTZ58mRDbNkX9v3xxx9HJ212xVkuiK4I6XMREAEREAERCB8Co1YdwZjVR9HymRzo82L+8Jm4/Uw/fQn4eT3Q5Csgd6W417F9MrDkbaBYc6DGh6GzZroOMkpjr9+AxF4EQDm8DJjTEMjyFNByVeisTzOJCAJhJcBokVq1ahW++eYbbNmyBTdv3jREUa1atdCoUSNkyBA7lCgtebSOrVu3zrCWMVdZixYtUKVKFcOCZlvoysgkzdOmTcOBAwcMC1716tWNO2SZM1u/gCoBFhHfHS1SBERABEQgQgg0n7YNaw+fw0cNn0TNJx8J31WPyg9cPg102QM84OIO25EVwOz6QK6KQFP3Ehb7DdDFn4GPngTSZgPe+NG7YW5dBYY8AjDS47tnokLuq4hAgAh4LMCYnJmChYWufalSeZCHIUCLDPQwEmCBJq7xREAEREAERMB/BIoNXIXz125hzdvPIWcGJ7mz/De8b3r+52ZU+Pb7kgB9zrnu8+wB4H+lgQx5gI4/uK4fiBoHFwOfNwHyvgg0nOX9iOOfBv7YD7y2GMgRxq6l3pNQDwEm4JYAY2TETZs24aOPPsKePXtiTJWWpS5duqBMmTIBi34YYFaWh5MAs4xKFUVABERABEQgpAmcufQ3nh62GkkTJcThQc+H9FzjnNwf+4DxZYAH8wIdvne9Drr50d2PlqHef7iuH4gaa4cA64cD5XsC5Xp4P6IZ0MNX/Xk/o4D3cOPGDfTr1w8LFixwOnb79u2NvLmRUkwmXO+AAQOQPHlyny/dsgAz70iNHTsWt2/fNlz/0qdPb0zo/Pnz+PXXX5E4cWIjrHvr1q1juff5fOYh3KEEWAhvjqYmAiIgAiIgAm4QWL7/d7SbsQOlc6bHnDal3GgZYlUZ0ZCRDd2xHg3PDty4CHQ7BqR8MPgLmtMIOLwUaDQXeNwHYthkkqMc8Nqi4K8vCDOQAIsNPaQE2NatW0EFzBDvQ4cONe5SJfg3MzotY7t370avXr3AxMQMBV+qVBj/SHn5BZAA8xKgmouACIiACIhAiBAYueIwPl57DG2ezYl3X8gXIrPyYBrfvQ+sHgg80xWo1M9aBxOfBX7bA7RZC2Quaq2NP2uNygdcPuO75NBMNM2E04mTA71+9+fMQ7ZvU2ycOHHCOL+nSxdmycX9QDZkBBjveg0ZMgRffPGFsTnlypVzuFyGiKdIq1+/Pt59913jblgkFgmwSNx1rVkEREAERCA+Enh1yjZsOHoO4xoXxYuFHg7fJU4qD5zZCdSeCBRuaG0dnzcFDi4C6n8K5K9lrY2/as2qBxxdCaTOBLx12HejjC0GnD8GtFoNPFrcd/2GSU/uCLB79+6BBpmJEydi27ZtxpWjSpUqGcHq8uXLF22YsRUw9Iyje+OMGTNw7do1zJw5E8wXzL6YXmrKlCn47rvvQGMOrzG98cYbKFCgQAx6f/75p5EWauHChYbHnRmAj3rjoYceMmJSzJ49G/Pnzzcin9NTzwykx4jnTI9lFo7DQH6MfM41sDz11FOGdqlQoQIY8I9aZufOnbF2kGOUKFHCJztryQWR0QM7duxogDMTHTsandYvTjplypQYN26cz/OA+WTFAehEAiwAkDWECIiACIhASBO4cfsO9p76C3tOXYr+Z/8aBVA+b8aQnrf95J7ovwJX/v4HG94pj6zpvAh7HuxVm+6EHbcDGR6zNhsmbWby5ioDgac7W2vj61oMHjK7AXB8LZAsLdBsMZCpkO9GWdQJ2PkZUHkAUOYN3/UbJj1ZFWAUTBRA9HajwLEtFDuMOF66dGnjr80+f/jhByMv72+//RZdnSKmePHicfbF1E8URSxnz55Ft27dsHnz5lhEzbtpcblR2qeS+vrrr42cwfZrYOecW65cuUJHgF24cMGYDEtc5kmr9cLkmfR4mhJgHqNTQxEQAREQgXhAoPqY77D/zOVYK+lW9XF0KJ87bFZ46uINPDN8De5Pnhh7+lUJm3nHmuiF48CYIkCSVMC7p62vY+v/gOU9gafaAC+MtN7OVzUpvmbWAX7ZGCW+WiwHMvrYDXTPXGBBW+CxqkDjL3w1c6f9LDi6AH039/X7OPYD1M5dG++VeS/WuK7ugJki5/Tp03j99deRNGlSQ4Q98cQThtWKwfkYqIJxIWh8oUXK7JNpo1555RUj7y7/3ry6dPjwYbRq1QoFCxbEO++8g2zZshnz2rt3LwYPHozHHnsMffv2NSxszPHL9FCdO3c2+kqdOrVhEKIV65dffjH6cVQ4N1qx2D+DBNasWROM4N6jRw/cuXPHmHPGjBkNgXjq1CnDekYPv2LFikXPn/0GNQiHOWHmxpo0aVKMZMe2i6bZj2bI/PnzY9iwYREbml4CLOC/KxpQBERABEQgRAjsPHERdcZvRprkifHYQ6mQJ2NqXLx2CwxmUaNwZoxtVCREZup6Gsv2/Y72M3egbJ4MmNGypOsGoVrjx8+B+W3cFxmHvgHmvmI9cqIv188ojLR8MXF0ivRAs2+AjH5Igv3XSWB0QSBpaqDnKV+uwGFf4SrAzGtGdD8sW7ZsjLXRPXDgwIGYPn26YbkyBRiFDv8+RYqYlmO6Ic6aNctwZaQ7oW358ssvjX4mTJhgBPejAKRLIgVZXFebKKR27dpl5AtmXAozQCD7pgWN+oTuhX369DEEF3VKjhw5HO5RyNwBo9mRwuv99983VGS7du1iRTnkwgmLIerffvttY6Gm0vX70xxiA0iAhdiGaDoiIAIiIAIBI/DR6qMYveoIWj+bE73+DVqx++Ql1Pp4k5FDi7m0wqUMW3YIE9b/hPbP5UL3auM3AG0AACAASURBVHnDZdqx5/lNV+CHKVHBNxiEw2oxLWcp0gHv/Gy1lW/qcb6cd8oMQLOlwIOP+6ZfR72YwT1e3+p7C5v/Zu2Tnq26INJCRAuXI0PM9u3b0bhxYwwfPhx16tRxaUEaNWqU4VHnrPDOFsdhoZ6gCKtXr57T+hRbDKW/YsUKh3Vsw+jTckZrGq9X5c6dG08++SQqVqyIkiVLGtY1lpARYJzM8ePH0aFDBzBKSsOGDY3LajTdsdA/kwE65s6da5gR6buZM2dOnzwY4diJBFg47prmLAIiIAIi4AsC9SZswfZfLuDTFk+h3GNRoctv37mHx3ovxb17wJHBzyPJfQl9MZTf+2g8eSs2/3Qe45sUw/MFM/l9PL8NMOEZ4Pe9QPOlQLYy7g0zNAtw8zLwxl4gbUxrhXsduVnbDDlfZxJQqIGbjd2sPrs+cGQFUG8aUKCOm43Du3p8EGC0wNFCRhdFahRGbE+VKhUuX75siDeKK9s8ZgzqQddJBhRhIA4G9uBdMd5jo1UspAQYHy/6ZjK64aFDhxw+bZw8oyXSLzSSiwRYJO++1i4CIiACkUvg+q07YNAKlgPvVTOSF5ul0gfrcezcVSzoUAZFsqQNC0hmAI6N3Svg0Qd8n4w1IBD++TsqoTILQ60zsbI7ZfqLwC/fAfU/A/LXdKel53Xv3gGGPgrcvh6YHGSr+gKbPgLKdQfKv+v5vMOwpVUBRhdE3rei2yCjBdoWZy6IrOPoDhVdEL/66qs4A/ux7cmTJw2vuyJFisTpgkiLGi1b9MQzcxSzvRmbwl6A2c6dXn4bN240rGIUa7S4uXKh9MU2W4qCaDsQ/SfpX7ls2TJjYSzMGfD888+jcuXKsfw8fTHJcOtDAizcdkzzFQEREAER8AWBNYfOosX07SiZIx0+bxsVEc0snefswqI9ZzCk9hNoXDKAlhQPF3bi/HWUG7kWqZMlwt7+VT3sJQSaMXrgZ7WAh58E2q53f0Ir+wCbx7iXP8z9UWK2+HkD8GkN4KECQPvY0e+87T5W+92zgYXtowQmhWYEFasCzAzCweAW7733npEP2FUQDmJ0JMDMIBx0/2PYeXrPJUqUyBA+NPJQEDVt2tTQFMw9/Pnnn8cZhGPs2LH47LPPQCHGUPYsvOc1b948TJ06FS1atDAsYNQtdH2kXqGxKHny5MYaGOOCAozWMwqwmzdvon///vj+++8Nt0vbEPu+ejQcCrArV65gzZo1RjjJBx98MGLvcnkKWQLMU3JqJwIiIAIiEM4E3lt8AFM3/Yy3qjyGThXyxFgK71LxTlWTUtkwqFbBkF/m4j1n0GnOLsONku6UYVvWDwfWDgGeagu8MML9ZeyfD3zZHMhZHnh1ofvtPWlhWqQY+p4h8P1dmB+NedIYnp9h+iOoWBVgnoShdybA4uqLbZgnzIy6fvToUUMcMdCffTHvdu3Zs8ewzvFel23hXTJqmkaNGkULMGc5vngfzPYKlenWaNuf3/OAmSY7hm+k2Y4X32huNC+nRdBz6dFSJcA8wqZGIiACIiACYU6gyugNOPLHFcxv/zSKZnsgxmqYzJhJjfn3/DzUy+ClBzF5w3F0rJAbb1fxYwAIf4OY+TJw7Fug7hSgYF33R7v4M/DRk0DSNEDPk+6396TF+KeBP/YDr34N5AxA0JY7t4CBDwIJEgJ9/gQS3ufJrMOyjVUBxsV5kojZWRh39nXw4EF88sknRiJmiifGlmC4+JdeeskIRc8w9CxmImbGmmDcCYolxqJgXXrhmUmdGdmQYoyf05rFJNG0fJkuiLR27d+/37CorV271uiLY9IiZp+w+e+//zYiNdKCxnqM8E5rHP/pi+LQAsaM0gyqwYFNxclQkIwSQpMgTYZxhYL0xcTCuQ8JsHDePc1dBERABETAEwJ/Xr2F4oNWIXni+4z7XwkSxOzl8o3bKDRgJZIlTohDA5/3ZIiAtmk4aSu2Hj+PSa8WR5X8DwV0bJ8ONuQR4NZV4M19wP1ZPOvaDMTRZTfwgOPQ3Z517KDVtT+BkbmA+5IAvX4DEibyWddxdvThE8ClX4EO30eF3VcRAT8SiPMOGJWimZyMcfmpAFmY8bpu3bqG8rRVqH6cZ1h1LQEWVtulyYqACIiACPiAwIJdp/Hm57tRMV9GTHmthMMeSwz+Fueu3MS6buWRPX3M3EA+mIJPu3i89zLc/Ocutr5bEZnSuBm4wqcz8aKzc4eAj0sCqTMBbx32vCPeIeNdsnrTgQK1Pe/HSstdM4GvOwB5qgCvfGmlhW/qzKoLHF0F1P8UyF/LN32qFxFwQsByEA7m+dq3bx8WLlyIJUuWRPtZPvLII3jttddQvXp13Rf7F7IEmL5vIiACIiACkUbgrS/24Kudp9CvRgE0L5Pd4fKbTduGdYfPhXxY95/OXUPFD9Yhfcok2NGncvhu5c5PgUWdowQFhYWn5dsBwMZRQJkuQOX3PO3FWjveN+O9s+dHACXbWmvji1pmsJHyPYFyPXzRo/oQAacELAsw2x7oF8n7Ybygtnr1aty+fdv4WPfFoihJgOkbJwIiIAIiEGkEig1chfPXbmHVm+WQ56FUDpc/Yvkh/G/dTyF/r2rhrtN44/PdqJA3I6Y2c2zNC4v9pSWJFqVqQ4FSr3s+5YOLgM+bAjmeBV5b7Hk/rloyUdywrFF5xzrtANLndtXCd5+bkRCZB4z5wFREwI8EPBJgtvNhdJHNmzdjxowZRrhGFtvoJX6ce8h2LQEWslujiYmACIiACPiBgGkxypg6Kbb1quR0hG9+/A0dZ++M003RD9Nzu8uhyw5h4vqf8Ealx/BGpZjRHN3uLJgNxhUH/jwKtF4DPFLM85n8dRIYXdD/gThObQc+qQSkyQx0Pej5fD1peXoHMLkCkDE/8PoWT3pQGxGwTMBrAWaORKsYc4MxAkn27Nmjw0dankk8qigBFo82U0sRAREQARFwSWD65l/Qf9F+1CryCD5s8KTT+sf/vIYK769D5rTJsLlHRZf9BqtC82nbsPbwOYxtVAQ1CmcO1jS8G/fGRWB4diBRUqB31B1+r8qInMD180DnXUC6nF515bTxumHAuqFA8RbAi6P9M4azXm9dA4b8u9f9/4pZi0FMNn4EVOgV2DlptHhLwCsBxnthjM/PcI6298JkActjcFERAREQAREQgUgg0OrTH/DtwT/wfr3CqFvs0TiXnLfPMvx9+y5+7FcFaZInDkk8zwxfg1MXb2D5G88ib6bUITlHl5M6uhKYVQ/IWhposdxldZcVvA1n73IARFmgaIlqMBPIV8NKC9/WoZWP1r6OPwAZbCyfh5cBcxoC9sLMt6Ortwgi4LYAcxYZkWHqy5UrZ8Td512wZMnCNGKQDzZfFjAfQFQXIiACIiACYUGA13by912OG7fvYHvvSngwVdI4513nf5uw89dLmNOmFErnTB9ya7x15y4e67UMCRMAhwY9jyT3ReUiCruyeiDw3ftAmTeAygO8n/6aQcCGkUDpjkDVwd73Z9/D339F3f9iDq4eJ4EkKX0/hqsezUiI9gJw6TvAtokSYK746XPLBCwLMCZBW7FihWHtYuI0s+TLlw/NmzdH+fLljfD0KgrCoWdABERABEQgcgjsPHERdcZvRs4MKbHmbddJc3sv3IeZW0+gb438aFHGzzmlPNiGvaf/Qo2xG5EjQ0qstbAeD4YITJNPawA/bwAazQEef8H7MQ8tAeY2BrI/AzRb4n1/9j3smwfMa+k7i50nM1zZG9g8FqjQG3i22389mHfpZAHzhKraOCAQpwBjgI01a9aAOcDMABvsg6HnmYG6Ro0aePTRR5HAPttihKOWBSzCHwAtXwREQAQiiMCkDccxZOlBvFo6O96rWcDlymd//yveXbAX9Yo9ipH1CrusH+gKZj6zqgUyYWJTLwJXBHri9uMNfhi4fR145ziQwgeWxiu/AR/kjbJMvXvG/dWdPRAV4MJZWdgeYCTCin2Asm+7378vWpiREJ+oD7w8OapHc92JkgG9//DFKOpDBOBQgF29ehVDhgwxcn6ZIeaTJk2KOnXqoFGjRkaY9USJApSZPAw3SQIsDDdNUxYBERABEfCIAMO1M2z7B/UL4+Wicd//4gC7T15CrY83oUDmNFjSuaxHY/qz0fDlhzB+3U/oUD43ulV93J9D+a9v05r0UAGg/WbfjTMyN3DtnPsh4k9sBmbUAlqvBTgnR4XRDxkFsc06IHMR383ZnZ7O7AQmlQcyFQLafRfVcs8cYEE7IFcFoOkCd3pTXRFwSsChALtw4QLat2+PvXv3hvS9rnv37hkisVevXmjVqhW6du0aa6EnT57ElClTooOEFC5cGC1atECVKlViichbt25h1apVmDZtGvbs2WO4VDLBdJs2bZA5s/UoSBJg+saJgAiIgAhYJfDZlhOoXuhhI+lvOJbqY77D/jOXDTFFUeWqMAAHA3Gw/DKsuqvqAf/cDCjyUcMnUfPJRwI+vk8G/F9pgBanmuOAIk190qXRyewGwJHlwMufAE/Us9bvmV3A9OoAoww++QpQ63+x25kBQ9JmA9740Vq//qhlRkK0jRw5vzXw4xdAlUHA0538Mar6jEACTi1gP/zwA5588smQvte1ZcsWdO7cGZcuXTIEo70AO378ODp06IBjx47F2FoGDOnWrRuaNWsW7T7JiI6TJ0/GqFGjYj0GBQsWxJgxY5AlSxZLj4gEmCVMqiQCIiACEU/gzt17KNBvOZIlvg8DaxYMu5Dnd+8Bj/dein/u3sNhNwJWVPpgPY6duxqSUQbLjVyLE+evWxaUIfcQm2ImdSbgzf1AQh96LJlh4pnUmcmdXZU/9gFTn49KrMxyXxKg6wEg5YMxW/JuGe+YMcz7s++46tW/n48uAPx16r9w+yNzAdf+BNptBDI94d+x1XvEELAchCPUiBw6dAhvvvkmatWqhW+//RalS5eOIcAoqEaPHm1Ys2ghe/nll0E3SoaH7927N3i/beLEiciaNauxtMOHDxtWtGzZsmHgwIFGLrObN29i5syZhijr0qWLYQmzct9NAizUnhbNRwREQARCk8CW4+fRaNLW6MlVyf8QhtctjAdShGZ4dnuKFFEUU7keTInVb7kOwGG27zxnFxbtOWPkDGPusFApN/+5i8d7R1nnKCiTJgrDCIhTqwG/bgGqDQNKtfctWlPcZSsDNF8ad99MAD21alTusMeqAf/8DRxfBzzXE3iux39tr54F3v835PtbhwEKx2CWmXWBY6uARnOBtFmB8U9HCcZuMV/mB3OKGjv8CYSlAKOIouWL7oEMBtKpUycj9L2tBYxulLR+ZcyY0bjPljLlf+FMly5dagiqcePGoWrVqsYuzp8/3xBmFGVly/7nk07rGvul8KKgS5PGtXuFBFj4fzG0AhEQAREIBIHBSw9i8objMYZKlzIJhr9cCJXzPxSIKXg1xjc//oaOs3fi+YKZML6J9YAVE9b/hGHLDqF12ZzoVT2fV3PwZeMDv13GCx99hywPJMd33Sv4smvf98XgEKkfjtnvye+BKVWAZGmBtw4CiVP4dlxagmgRchWQ4tIJ4JPKwNU/gGxPR92dOvVDlCsiA4IwMIhZNn0IrOoXJdIaf+7b+XrS24pewJZxQKX+wH2JAf53ofpAnX+DcnjSp9qIgB2BsBNgZ8+eNdwHixcvjrZt24IBQ+h+aC/A6HZIi1Xt2rUNgWZbHH1GK9eyZcswadIk5MgRMyxuXJ85eqIkwPQ9EwEREAERsEKg0qj1OHb2Kma2KolMaZLhzc93g2HQWawkNbYyhj/rfLDyCMauOYqulR9D54o2iWtdDLrh6Dm8OmUbnsmdwVh7qJSvd59Bl7m7UDFfRkx5rUSoTCv2PD5vAhxcHHUniXeTzGLe0fKnK9+HTwD/3ASafQNkeMwxow8LARRhjxQDXlv8X06vieWA33bHvJs2pghw4XiUxenx54PPfPcsYOHrQOFGUa6HtIbVnhD13yoi4CMCYSXALl68iMGDB4N3uGitolXLDBhiL8C2b9+Oxo0bY/jw4Ub0RtvCwBzt2rVDxYoVDevWjRs30K9fP5w4cQLjx49HunTpYtSnKJs7d64hznLnzu0SvQSYS0SqIAIiIAIRT+D0pRsoM2wNUiS5DwfeqxbNY+A3BzBl4894qXBmjGkUpGhwFnen7YwdWLH/d0xoWgzVClh3Hbtw7RaKDlyF+5Mnxp5+VSyO5v9qpqBsVy4Xejyf170BGfJ9flvg3CGg43b32rpT29Zlj+0K1gXqTokKusHgGwwTz7tfyR9wp1frdc1w8bwDxrtg9uXXrVGuhw9kB9puAJLd/1+NvV8CX7UCMuYDXt8K/LIxyiqW6iHg7SPW5+DPmqd3AJMrAA8VBC78BNy+AYSCa6Q/16y+A04gbATYtWvXMGjQIJw5cwYjR440XAtZPBFg9m1cCTC6J9Jd0ZEAGzZsWKxNY9RFukmqiIAIiIAIiIAzAp9t+QV9v94P3vua9Grx6GpmIuCMqZNiW69KIQ2w7Ii1OHnhupGwmImL3Smlh67Gb3/9je/eKY8s6XzsKufORGzqmoKS+cmYp8zt4mmYdncGYnJlJllOlxO4cTHqD5MjJ0kVFaHw6c5AlYHu9Ohe3R8/B+a3AR6rCjT+InbbtUOB9bx/5iRQx6h8wOUzwGuLgF0zoyIMMvAGrXahUG5dBYbY3Etk7rLXt4TCzDSHeEQgbASYadFyxd60eAXKAsYAIPaFLpESYK52Sp+LgAiIQGQTaD5tG9YePodhdQqh4VP/RdllZMF8fZaBASF4D4n3kUKxXL91B/n7Lkfi+xLg6OAX3J5im89+wMoDf+DjxkWNMPyhUCq8vw7H/7yGhR3K4Mksad2f0pfNgf3zgZfGAEVfc7+9lRbfTwSWvQOUaA083RGYWQc4/9N/Lf1trbnyO/DB41GC793TsWc8pTJwcluUOKNIsy+bxwIrewNZnoqqx8LQ8wxBHypldEHgr5NRsyndAag6JFRmpnnEEwLxVoCZ97waNmxo3AWzLfyMEQ8ZGdG8H8Z7XqtXr8aECRNihJtnrrEPPvgAK1ascHg/zNFzIBfEePLt0DJEQAREwE8Ebt25iwJ9l+P2nXvY2acyGHjDtjT55HtsPPYnRjd4ErVDKEqg7Rx3nbyE2h9vQsFH7sc3nZ5xmxTvjtHlzyN3P7dHc92AKQHy9FoKCuD971VDyiT3uW5kX2P7ZGDJ28AT9YGX/RS0YXEXYMd04IWRwFNtoixgvPvFABzFmgE1PnJ/3u62GFsMOH8MaLkqSkiZheHmh/77MqHnKSBp6tg9//1XVNRD3iNjyVkeeHWhuzPwb/2ZLwPH/n3B/so8IE9l/46n3iOOgCUBxpDuBw4cAP/JnFhJkoROskhnLoiKghhxz7IWLAIiIAJhQ2DtobNoPn27kbiYCYzty0erj2L0qiNoXDIrhtQOzdxDc7edRI/5P6JusUeNgCHulnWHz6HZtG0okzsDZoVAII7Dv19B1Q834OH7k2FLz4ruLieqPu9/fVwyKpQ6LVH+KLxfxXtWDIKR3ebZ4d0quvE9EDOQmD+mYIhMis2KfYCyb/83xOGlwJxGQJaSQMuVzode3hPY+m9C5vqfAvlr+WWaHndKCx0tdSy9fvN9NEmPJ6aG8YWAJQFmihwu2lGQimDCcCbAHOUBo3A8cuQI+vbtaykP2PXr1zFnzhzlAQvmBmtsERABEYiHBPos3IcZW0+gU4U8eKtK7Ehym386j8aTtyLPQ6mw6s1yIUlgwOL9mLbpF/R6IR9aP5vT7Tle/vsfFOq/AqmTJcLe/g5c1dzu0bsGZkj9Z/M8iM9a2lh13O12RA7g+gX/udUNywb8fQno9hOQMoO7s/NN/YOLgM+bAjnKRd3lMsvSbsC2SUC5HkD5ns7HonsfA5YkShoVoj7UCoXk8nej7tk1nR9qs9N84gEBSwKMubA6duyI27dvh40A494cP37cyAVGl0P70r17d7Rs2TI6sTIF2+TJkw2xZV/y5s2Ljz/+ODpps6t9lwuiK0L6XAREQAQim0DJIavxx+W/nd414v0v3q+iW9y+AVWRKmmikANGgUihSLFC0eJJCaVAHLQ40vLY8pkc6PNifk+WE9Vm7ivAoW+Amh8DRZp43o+jlsz99UHeqAiH3X/xbd/u9Ea3x+HZgfuSAHQ1pJBiGVs06j4akzQzWbOKCIiAQwKWBNitW7eMZMYMbGF/RyrYXJ1ZwMx5MeT8mDFjsG7dOlBIFi5cGC1atECVKlWQKFHM/6FxnUzSPG3aNMPlMm3atEayZ94hy5w5s+WlSoBZRqWKIiACIhBxBI7+cRWVR6/HAykSY2efKkiQwDGCWh9vwu6Tl4x8VMxLFWql0ICVuHzjthGpkREbPSlm1MH/vVIULzwR3EAcr8/aiaV7f4sVFMXtdW0dDyzvEZU3ivmjfFl+WgPMqA1kLQ20WO7Lnt3va0JZ4PcfgVe/BnI+B/x1ChhdIEqU0W0vYei9NHB/kWohAv4hYEmAceg9e/YYgSt69uwZK6+Wf6YWvr1KgIXv3mnmIiACIuBvAhPX/4Shyw65vDs1eMlBTP7ueMgEqbDlcu7qTZQY9C3SJE+MH73I4zVuzTG8v/Iw2j+XC92ruZl3y8cbRVFMcfxV+6dRLJsXObQoSihO0mYF3tjr21ma4q54C+DF0b7t293eVvQCtowDnukKVOoH7JoBfP3/URlzVwaazHO3N9UXgYgiYFmAmS56tBC5444XUTT/XawEWCTuutYsAiIgAtYINJy0FVuPn4crqw8THNNCVDTbA5jf/mlrnQeoFiM0MlJjyRzp8Hnb0h6PagbieCZ3BswMYiAOn0RANCncuwsMfRS4dS0quTCTDPuqLOoM7PwUeH4EULKtr3r1rJ+jq4BZdYFHigGt1wDzWgD7vgKqDAKe7uRZn2olAhFCwJIAM938du7caQlL0aJFQ+6umKWJ+6iSBJiPQKobERABEYhnBG7cvmOEn2dhqPPkiZ2HOr90/TaefG8l7kuYAIcHPY9ECZ34KgaB0Sff/YxBSw7g1dLZ8F7Ngh7PIFQCcRw7dxWVPliPB1MnxXZfJL+eXR84sgKoPREo3NBjPrEamjm2GPiCATCCWWwTFjMf2Kj8AEPMt98EPOT5MxHMJWlsEQgUAQkwP5CWAPMDVHUpAiIgAvGAwPL9v6PdjB14Old6zG5dyuWKKAooDr5sVxolsqdzWT9QFbrP+xGf/3DSCJHPUPnelDLD1uD0pRtBTTptWht9FhJ/8xhgZR+g6KvAS/+GM/cGktl28MPA7eu+t6x5OjczJH6F3sCaQUCytECPE572pnYiEDEELAmwiKHho4VKgPkIpLoRAREQgXhGYMjSg5i04Tg6VsiNt6s87nJ1zLPFfFvdqj6ODuVzu6wfqAo1xm7E3tN/eX9fCjDcLCmAXLlk+nNtZlLo157OjgEvFfB+qNM7gMkVgPS5gE7WvIdcDhoqERBtJ7p2KLB+GJA0DcAkzAVfBupOdbkUVRCBSCcgAeaHJ0ACzA9Q1aUIiIAIxAMCDSZuwfc/X8AnrxVHpXyu7wZ9tfMU3vpiD8o//iCmNfciN5WP2eXptRS379zDgfeqIUUS526UVoYNhUAcnefswqI9ZzCoVkE0KZXNyrTjruOPe2A/rQZm1AGylgJarPB+jr7o4ZeNwPTq//X00hig6Gu+6Fl9iEC8JiAB5oftlQDzA1R1KQIiIAJhTuDuPSBfn2Vgjq8dfSojfcokLlf064XreHbEWqRMcp9xZywUyi/nr+O5kWuROW0ybO5R0esprT9yDq9N3YZgBuJ4/qMNOPjbFSOgCAOL+KRQLFE01Z0CFKzrfZdbPgZWvAsUaw7U+ND7/nzRw91/ALpF3rkV1dub+4D7s/iiZ/UhAvGagNsC7PTp00aurE2bNuH69evIkiUL+vTpg2TJkmHRokX466+/ULNmTWTMGHo5SwK1kxJggSKtcURABCKJwJW//0HP+T9ix4mL+LLd03j0geRhtfwjf1xBldEb8Eja5NjUo4LluZcY/C3OXbmJ5W88i7yZUltu56+K5n2pCnkzYmqzEl4Pc/H6bRR5byXuT54Ye7wIaR/XRE5euI4s6VI4rZK9xxLjs919qyBtisRer8noYOMo4NsBQInWQPX33evzwEIgf62YbRZ1AnZ+BrwwAngqyBEQbWdmCs0HcgBddru3TtUWgQglYFmA3b17F19//bUhtm7evBmNyzbi4cyZMzFgwACMGzcOVatWjVCkgARYxG69Fi4CIuBHAmbIcg5RKmd6zG3jOoiFH6fjdtdf7jiFbl/uwfMFM2F8k2KW23easwuLfekeZ3lkxxXHrD6KUauO4PXncuEdH+Xuemb4Gpy6eMMQphSoviw1x23CnlOX0LZcLvR8PnausX6L9uPTzb8g14Mpsfqt53w39KntwCeVgAfzAh2+t97vr1uAqdWAliuBLCX/axdKERBtV7N7NrBrJpCnUlROMBUREAGXBCwLsP9j7yzAo7q6LryguIQQ3N0luLtTChQtUKBYkQKlOMXdvXigSGmRFi3uTrBAkCDBg2saIIFg/79OvhsmyUxyJ5lJZpJ9nud7+pG599xz3jNy1937rH3y5El0794dSZMmVcWYs2XLhkGDBuGrr74KtJxnseZ27dqhWbNmGDBgAOLEiZlV0EWAhfm+kwOEgBAQAmYTmLzjCuYduBF43oj6BdC+fFaz+4mqE4ZsuIA/T9xVBYdZeFhvozigSGhYJD1mtSiq97RwHTdj9zUUypgs1P1p3VaewfaLjzDzuyL4tmiGcF0n+El0hqRDJIUpBaqlmpbCqfU3uWlhNC/xJUVul8djdF5xGvG+io1NPSogXzoLRxjHpgE+vAX63wASp9Q3Lc1Z0Ck78NNxIE6CgPMmZAowurB0bTF9o5KjhIAQsCABXQLMVysHXwAAIABJREFU398f48ePx9q1a5XYqly5MrTaYBwL/+bk5AQvLy907doVadOmxYwZM+Dg4GDBodpPVyLA7GetZKRCQAjYD4HmC4/j5K0X+K5EJmWBHj9ObOzsXRlZU5hOLbOl2X3z2xFcvP8fVnUug7LZU+geGvcmcY+SuamLui9gcGCzBcdx6vYLNC2eESMbFECS+EEfpFLQ8JjHPm8tmhI5d/91TNl5VTk90vHRUu2fM/fQ72939R7h3jW2PzuVBu3mbz17g29mH8Yb/4+Y8V0RNLKQmAwy9uX1gVuHgOYrgPwNw57W9d3ASoP9YuV7ATVHAz7/q7MVLzEw+EHY/cgRQkAI2DQBXQLM29sbPXr0wJs3b5TYosAyJsCM/c2mZ2+lwYkAsxJY6VYICIEYTSDP0AADiytj6qLv3+ew9fxDFM+SXFmh20PT9hmFxzmw0Mid4B64E4OrI43D/yIiVph0/uE74Ov/UfXMPXYzvyuKElmTq3/PP3ADM/dcU2uQNEEcXBhpua0Ghz2foc2SE6iUKxVWdLSc26NWr2xSk8Kq1hjTJykqabbRZ+05XH30KsLFpENdhoOTgP3jgdJdgbqTwl6xhZWAh+5Aqc7AyUUBx3feD/i9DHBAZEoiUxOlCQEhYNcEdAkwvWJLBFjAe0EEmF1/JmTwQkAI2CCB07dfoumCY3DO6IhNPcrjP7/3qDr1AF688Vf7eri/x5ab211vNJ53FDlTJcGevpXNHmq7pSfBPXCzWxZFA+f0Zp+v54Sbz96g2tQDIQ5ltOjRf3648fSNeo3XH9GggC4XRz3X5TE+bz+g8MidFhd2dJBk1I57u7jHq+vKM9hx8VHgsApmSIYtPSvoHab5x2k27WkKAt2Ohn7+lS3A6u8BhwxAHw/gwETgwAQgVR6gyPfA7uFA8XZA/Vnmj0POEAJCwKYI6BJgr1+/Vvu9bt26hQULFijnQ2Ni6/r16+jUqRNKlSqlzDgSJrTsRlqbIhfKYESA2ctKyTiFgBCwFwILDt7AxO1X8GPF7BhSL58atmZfzv9/oH9Vm05FXHbsNkZuvoQmxTJiWnNns7HP2X8dU3deRduyWTG6oQUKBRsZAY0+aPihmYRo9bm0Q5nGN75xYZTLoT990pyJakYc23tVssherCev3qHUuD1KKNL2n43Ru6bzj6ki0k6J42Fbr4pIa8WIotr/xX1gbIPuAgmSmUYytxTw9GqAwKLQYptfDnh8CYibCHjvGxBFYzRNmhAQAnZNQJcA+/z5MxYtWoSpU6di4sSJaNy4MV6+fIlu3boFfD/Mn4/kyZPjr7/+wsiRIzFixAi0bt3arsFEZPAiwCJCT84VAkJACIQk0HH5Key9/AQL2xRH7QJfTBq0FDNDYWaL/H5Zcw4bz97HmG8Lok04Cv2yeDOLOBdI74CtP1e0yhTHb7uMRYduol/tPOhRNae6BoUK91B9UzgdelbLZZXrap1qxZDDyyj44FhYmX0Gd518/sYfDeccwZRmzmbtxQv35OloSGfDlquAPF8b7+bCWmDdjwHRr18uALH/V9z60XlgURXgU0BaKNpsAHLoL2EQ7jHLiUJACFiVgC4BxhHcvHlTuSA+e/ZMRcPKly+PXr16qcHNmzcPZ8+eVe6I3B82d+5cZM6c2aoDt+XORYDZ8urI2ISAELBHAtoeKLdhNVXkQmusCdZk/jG1X+nIQNu9MWVqH1P8/u1ZAYUyhBIFMbE4jNxwDxwbCzKzMLOl2/eLT+Do9WdY2q4kquaN/FqemmFGzfxp4NK2hO7p0cmwSCZHpE4aP8g5wzZexB+ud2DMLZPGG9ZgaHTQ+ycABycCZXsAtccZn9fsosCLm0CD2UCxH4Ieo53Pv/a9CiS1nEukbshyoBAQAhYloFuA8aqurq7o27cvnjx5YnQQjo6OmD17NsqWLWvRQdpbZyLA7G3FZLxCQAjYMgGtgDFT4JhqGLxphYqZTpY/ne257/r4vUfhUQHGCbcn1gs36kZzj+KslzdWdiqNCjl1WpqbcTXnUbvU3rpTQ2sgVZKgYsaMbsJ9KJ0VS4/fi0TxvgKNSkJrR64/UxFF7ud6/e6DiioycmbYas44CM/Hr1XEkJHDKGs39wMrvgXSFwU6h9xjh7N/AJt6AMkyAr0vGR/m8TkACx3nDf/7J8rmLxcWAkIgBAGzBBjPZgRs1apVWL16daAQo/CqV68eOnbsqPaHxfQmAiymvwNk/kJACFiSAGtnsYZWs+IZVdpY8DZ040WsdL2DX2rkxi81rJsmF555USy0XnxCRWk2di8fni7UOeO2XYbLoZtWmScdAstP3IeUSeLh9NCA/VJR0WrPPKScCdd2KYtS2ZxCDIF7AZccvoWnr9+FeO3wgKrI5BRQksDb9z2KjN6lolyMGEZp496tcekChvDrPSB+sFpjMwoA/90D6s8EireP0qHKxYWAEIgcAmYLsMgZln1fRQSYfa+fjF4ICAHbItBr9TlsOncftBL/rmTIh3yawMmTNil2/lLJtgYPQKtx1bZsFoxuGDRKY85gtaLBdCVkLStLNq3vKnlSYVl7y9nAmztGTWRyDxr3ohk2RucYpWNL75gAdQumQ5U8qZX43nnpkSoKzeLQbPx3lz/OoHLuVFjeIermEzj+JTUBr5NA63+AnAYC9/JmYE0bgEWXfz5rLi45XggIATslIALMCgsnAswKUKVLISAEYiwBpqUxPW1fvyrInjKxUQ60MKeV+cH+VZHFxgoz/7jiNHZ7PMb05kXQuFiGcK8jLfeLjdmNhHG/wuUxlo3qTNt1Db/t88RPVXJgQJ284R5jRE/U6oEVzpgMm3sEtYdffuw2Rmy+FKJWmNdLP1SctE9descvlZA3bVKM2eKBJUduqaLOLO4c5W33CODoTKD8L0DNUV+Gs/Rr4M5RoN40oGSnKB+mDEAICIHIISACzAqcRYBZAap0KQSEQIwkoKXGOSaKi3PDa5lk0HvNOWw4e98ma4JRNFE8sf4X64BFpFWZsh+3n/uG28zD1LXbLzuF/VeeYG6rYqhX+H/pchEZaDjPpdlIoRE74f/xE86PqAWHhHEDe6r/2xHlysg0VKajGjbNcKNa3tT4vV1J1Jt9GJce+JhMZQzn8MJ/mudu4M+mQMYSQKe9Af3Qcp7W83ETAgNuBljNSxMCQiBGENAlwFgHbP369fDx8dEFJU6cOMiXLx+KFSuGpEmD5Trr6sG+DxIBZt/rJ6MXAkLAdggw9ZApiDXypcHiH0w742kpZ8UyO2L9T+HfZ2XpmT/87y3KTtiL+HFi4+rYuhHuvv/f7vj7zD2jzn4R6VwzMrGFemptl5zEIc+nmNWiKBoWCSg6ff3pa9SYdlBxdBteK4SDIfeEVZi4T9X5WtW5DFouclXnRcT0JCI8Q5zr/xqYkBGIFRsY/ACIkwDY3BNwWwGU/BGoN9Wil5POhIAQsG0CugSYVnTZzc3NrNmkTp0aY8eORZUqVRArViyzzrXng0WA2fPqydiFgBCwJQKawcavdfOiS+UcJof29v0nOI/aqW7ATw6pEcKSPKrmRJe+rivPqOLFf/1YJsLDWHPKCwPXnVdRKkarLNEoXkqO3YMEcWPjypiIi8SIjmnx4VsYu9UjSNHqSTuuYP6BG2hUNANm/G+fV/DrTNl5Ve2301rJrE74u6sNuTKznteDs0DbjUCG4sDkHMBH/4C9X9wDJk0ICIEYQ0CXAPv06ROOHj2KHj16oF27dihTJuSPyJs3b5QFPeuAtWnTBnfu3FEFmmPHjo2FCxcif/78MQaqCLAYs9QyUSEgBKxMoNaMQ6AN/bpu5VA8S/JQr9b1jzPYcelRuIsdW2MqE7dfAZ37ulbOgUF1I7636sbTN6g+7YASmBSalmj7rz5F+6UnUSJrcvzTtZwluoxQH7SOp4V8isTxcGZYTXz+DJSZELAPkOYjNCEx1rgHsPzEvXj19oN6Oar3s4UY484hAO3kKw0A4icBdg8HspQH2m+LEC85WQgIAfsjoEuAffjwATNmzFBpiEuWLDEppmhPP3nyZCW8KNIOHjyIbt26oXPnzqpoc0yJgokAs78PgoxYCAgB2yOg1c/Sm76npSuyRhZrZVm7/ev+QO3talgkA7hHLXi7/PAVev7lptLnFrYpjtoFLFNAV9tTdnRQNWRwTBjhac7Zfx1Td15F+/JZVWqjLbQy4/fikc9b7OpdCU9fvQOLRKdLlgDHf60e6vAodil62ejmSFdHm2lXtwOrWgCZywDedwGfB0Dz5UD+b21miDIQISAEIoeALgHGvV+9e/dWe8AWLFiAFClSGB3d9evXldiqVKkSBg8ejMePH6Nr167Ili0bJk6ciCRJIrb5mJE4pkFu3LgR+/fvV3XIWIOsYsWK6NSpk9p3FlzkeXl5KdG4detWeHt7w9nZGR06dECtWrXAvWqGzd/fH7t378bSpUvh7u6u+mZ9M84pffqAPHQ9TQSYHkpyjBAQAkIgdAI0haA5BOtBsS5UWI0RELohsp0fWRsOCYJ+x4d1vrmvt1lyAnTtY6uaN7VKmfumcDr1t8WHb+LgtaeBXboOro60DgnMvYTR4zuvOA3axs9qUUSJP73t2Wt/9Fp9Fj2q5UTZ7F9+x3/60w3bLjzEtObOag620AatP4/VJ70wpF4+XHn4Cuvc7sGYNX3wsTIFtdeqs0jtEB8D6+YLsVcsSuf2zgeYYFBGIUlqoJ9nlA5JLi4EhEDUENAlwLQ9YBwio1tOTiGLI/K14Mfxb4yAhXWe3qlrAo+iKnijWGIKZNmyX36kb968ie7du4PnGba4ceOif//+Kp1SE2yM8rm4uGD69Okh+i5YsKDqW2+RaRFgeldUjhMCQkAImCZAG/HJO66gY4Vsuq3Rf/j9pBI+rAfFulDWatxzlnfY9jC7p4nED+WygeYglmqLDt3E+G2X0aZMFpVuqaedvv0S3f48o6JJFKYbe1QItPSvNHk/7r7wxbZeFZE/nYOe7qx+DAUhhSG50c2QwsoWSwyYDWJ+eeDxxYDTKg8Eqg42uws5QQgIAfsnoEuA0QVx0KBB8PDwwKJFi5Azp/GaGo8ePVKCK168eEqoff78WUXAuA8sNOGmFyMF1Zo1a9CwYUM1Bl6HUatt27Zh1KhR6u+MvPHvWtoko1lDhgxBkyZNED9+fHh6emLo0KF49eqV2puWOXNmdfmrV6+qKFqWLFkwZswYZM2aFe/evcPKlSuVKGMKJSNhetIoRYDpXVE5TggIASFgmkDDOUfhfs8bKzqWUrWf9LS/TtzF4A0XVLof0/6s1SjyKPaKZnLEsg6lwHTE9W734HbXW1mnUxyx8HIaC0W9DOfhduclGs8/pupdse5VWM3l8E2M23o5yGGZnRIpK3vaYxX+X3Fjm3EMBFRNNy2ayYHbmrtlWMxNvr59IHBiQcDLfa8CSS2Tlhru8ciJQkAIRAkBXQKMI6OQGT9+vIoo0YwjePoej9H2fH3zzTdKEN26dQsdO3ZE8eLFLZKCaIrQ8+fPldArUKBAoABjNI5jpRMjx5048ZfinRRsFFRz5sxB7dq1Vbfc30ZhRlHGlEatMW2xT58+SnhxH5yDQ9hPB0WARcl7WS4qBIRANCJAI4VC/0snZNFhFh/W05hmV2LsbuXod254bfVfazSt0O/P1XOhT83cgZfweuGLTE7Wr+eUZ+h2FRW6MLI2kppItfT1/4g+a8+BToxsNKX4qWpOtHJxxfl7/ylTk941c6P14hMokN4BW3/+8ttnDWbm9tlo7lGc9fJWp439tiBal8libhe2d/xDd+CkC5A4FVBjhO2NT0YkBIRApBDQLcC434ppe8eOHUOdOnXUPipGi9jevn2LHTt2qL1WL1++VBEjHsPoEYVY+/btMWDAAKOiLaKzpEBavXo1li9fjlmzZqFUqVKqSy1dsVGjRujZs2eQyxh7jWPevn27ivBxz5phC+01Y+MXARbRVZXzhYAQsASBN/4fbWsPjBmT2u3xGD+uOI3S2ZywRsf+L8Oumy04jlO3X8ClbQnUzJ/GjKvqP5QufXTro2sg3QMjuzVfeBweD3zwR6fSKgpnrNG44uj1Z8oxcXbLYiiTPWD7wHMah8w5gnsv/ZTTIP/dolQmTGxcOLKnEer1Zu7xxMw919QxwYsy29RAZTBCQAgIATMJ6BZg7JcRrWHDhuHEiRNGL8MUP4q077//XqUAbt68WRlllCtXThVltmRjxGrgwIHgfq5vv/1WpT4a7tE6deoUWrVqhUmTJqFx48ZBLs09ZIyYVa9eXUW3/Pz8MGLEiEDr/OB73CjKKPJCS780vIAIMEuutPQlBIRAeAlQiNTKnwY/VrK/GkMjN1/CsmO3VYSmV/VcZiHQUu4aF8uA6c2LmHWunoO14sqJ4n0Fj9F19Jxi8WNY74p1r0wJJ1q2lx6/F8kTxcX+flVDuDRef/JaiTCKdLbRDQugbdmsFh9nRDq89ewNNp69j4xOidCsuG2Yg0RkPnKuEBACQkAjYJYA40ncc+Xq6op169bh4cOHqp9EiRKhfPny+Prrr5Ehg/U2PRsumybA+DcacNBQ44cffgh0WgxNgGlmIaVLl9YlwHgtpisaE2CbNm0K8W7q16+f2msmTQgIASEQVQRe+r5H0dG71OXrFEiLKc2cTaaqRdUYQ7tuRCJM9739UH7iPmU2QTdES7c1p70w8J/zKrrGKFtUNJpm0DwjWcK4cB9RK8QQlh+7jRGbLwUpZhz8IEbHGCVj01NnLSrmKdcUAkJACERHAmYLMFuDQEFIS3ru32revLmyy+f+tMiKgP32228hkNAxUQSYrb1TZDxCIGYRoG1337XugZOm6cLCNiWQL11Smwfx9PU7lBy7R+374v6v8LR6sw8r97zQCveGp1+eo9m2R3XUSJujsXpX3y08jhO3wk7DZI2yZAniIlXS+OHFIecJASEgBISAmQTsXoBxvsZSCLV9Xi1atFDuhYaNr9HxkM6I2v4w7vPau3evqnNmmMpIJ8dp06Zh586dRveHGeMtKYhmvgvlcCEgBCxOoOvKM8p8YULjQjh07Sm2/8+IwdzaURYfmI4OtYLKlXOnwvIOAft6zW2z93pi+u5ryriBBg6Wap8/A86jdiqXvn39qgRauVuqf3P60dIQmxbPiKnNnANPpdV8yXF7wALWF0bVRryvrGNEYs5Y5VghIASEgBD4QsBsAUZBQlv69+/fm+RI23m6BfK/kdF8fX3V3rR79+4F2t2LC2JkkJdrCAEhYKsE8g3bAb/3H1V6GtPUlh69jVH/XlLDndy0MJqXMCgIa2OTYHof0/yGfJ0v3PvXrj1+hVozDikDipNDalhshnTloztfescEODaousX6DU9HdFysOHm/Mlq5ZLAX7Q/XOxi28aIqCj2nlWX3X4dnnHKOEBACQkAIBCWgW4B9+vRJOR1OnjwZ9+/fD5UjDTcsUfcr+EW2bt2qrk2HxfTp06tUQ80FkWl/NNsYPny4yTpgrA927do1dYyeOmAUdqtWrZI6YPKpEQJCwK4IHPJ8irZLTiqbce7t0douj8fovOK0zddUKjN+Lx75vFW26LRHD2+rPGU/7jz3xYbu5U06BZrb96y9npix+xpalsqsootR3bQ0xCU/lET1fKnVcFoscoXrzedKfFGESRMCQkAICAHbIqBbgFF80TGQkS+aXrBQsamixEzhY0SKx1myGRpvBO+XhZkpwpj+pzUWbmYtMKYcBm90UGSNMm0OdG10cXFRYit4y5s3L+bOnRtYtDmsOUkKYliE5HUhIASsSYDRD0ZB+tfOg+5VcwZeiulzrJFF2/FDA6qC+8JsrVEwUTixmLH78FqIxUrB4WwTtl/BwoM30LlSdgz+Ol84ewl6WuN5R1Wx5bmtiqGeDYibeQduYPKOK2hYJAOYXurt+x5FRu9C3K9i4cLIOlarg2YRmNKJEBACQiCGEtAlwLQ9Vhs2bMDIkSPRrFkzFWWK7Mao1b59+8BI2NmzZ1X0K3PmzMqGvmXLlkiZMmWIIdFynsLswIED6nhnZ2dVw6xWrVoh6pLR0INFmll02sPDQwnIevXqqT1kjLjpbSLA9JKS44SAELAGgVLj9uDJq3fY8Usl5E0b1HRj3NbLoE07rd1p8W5rbdXJu/h1/QXUKZgWC1oXj9DwtHTBDI4JcXRQNd19+X/8hNUn72LJkVtoViKTEnDcR+Xj9x6FRwU4S9pKXSrN8ZH7vS6OqoM1p+5i6MaLKhrGqJg0ISAEhIAQsD0CugSYZttOgcLUwrRp09reTGxoRCLAbGgxZChCIIYR8Hjog69nHTa5R+nyw1eoO+sQMjklwuEBVW2OTs9VZ/Gv+wNlnEEDjYg21sJiTaxdvSshd5qwHSD/PHEXv+31VCmQWsuWMrEaz6u3H0BzE+eMjtjUo3xEh2ax8+v/dgQX7v+HBW2KY8Wx2zh24zmmNXdWFvTShIAQEAJCwPYI6BJgjBz16NFDpR9aY2+X7WGJ2IhEgEWMn5wtBIRA+Alo7n9ty2bB6IbG3f+0GluW3BsV/hEHPbP4mIAUSUs5DA7fdAkrjt9Gn5q58XMoBZ23nn+Iidsvw+ulnxpQpuQJkd4xIe699AOjTIatR7Wc6Fcrj6WmHOF+mGbJdMsKOVPiyPVnqj9bidBFeHLSgRAQAkIgGhLQJcC4P2rGjBnYvn270WLE0ZBLhKYkAixC+ORkISAEIkBAi4YsbV8KVfOkMtrTgoM3MHH7FbQpkwVjLGjRHoFhq1OvPnqF2jMt61zIaFArF1dl5kFTD1Ot4IideP3uA5Inioufq+dG+/JZAw+duusq5uz7spd4bZeyKJXNKaLTtdj5FI0VJ+0L7K9SrlRY0TF89v0WG5R0JASEgBAQAiYJ6BJgPNvd3V3VzurSpUsQ8wphG5KACDB5VwiB6EFg24WHyJU6KXKlSWIXE9LqPyWIGxtXxtQ1OWam19Fp0DFRXJwbXstm5sY9V2O2eKjUOabQWao5j9qF//ze48jAasiYPGGIbmmqQXONHKkSY2P3CkiaIE6IY24+e4Nf153Hxfv/BbF8t9QYI9qPJrzZz/hGhdCqdOaIdinnCwEhIASEgJUI6BJgtKBnGuLChQuxe/duFQ0zLFYcfGyRXQfMSmzC3a0IsHCjkxOFgE0QoNkCjQw2uz9Aj6o50a+27aSbhQZIM7ComT8NXNqWCJUlo0KMDhnal0cFfF//j8oq3tvPH7P2eCr79OnNi6BxsQwWG87Adeex5pQXhtTLhx8rZg/Rr2Yt/0O5rBjVoECo1z1564VNRb+0wWppiPy327CacEoc+UZZFlsw6UgICAEhEM0J6BJgmgmHm5ubLhzWqgOm6+I2cJAIMBtYBBmCEAgngcOez9Dvb3dl3MCWJUUiHOxve2YVxqbXcfkp7L38BBMbF0aLUqEXWv7nzD01T1qp01Ld2u3609c4fesl7r30xZ0Xvrj3whe3n7/BS9/3IS7tOrg60joksNiQ9l95gvbLTqFE1uT4p+uXumjaBRrPPwa3Oy/xe7uSqJY3oJaWvTW+X//6fwORFEnioW3ZL+mT9jYPGa8QEAJCICYQ0CXAGP0aM2YMaOmup1mrDpiea9vCMSLAbGEVZAxCwDwC7z58woRtl7Hs2G11Im28L9z7T9m5R7QgsHkjCd/Rb99/Qt5h29XJJwZXR5owBAz3O9HwgvO+MLK20bS78I3E+FlNFxzD6dsvjb6YON5XyJoyMTImT6Rs861hj59/+A4w2nZ6aE2kTPIlOkRnw0Ijd6pxeYyug0TxvrLktKUvISAEhIAQEAIhCOgSYMLNPAIiwMzjJUcLAVsg0GDOEZy/958airaHRivk261KDgysk9cWhmlyDGfuvETrxSeQI3USbOlZQddYf151VqVZTmpaGN+VCD1ipqtDEwe9eOOPYmN2K3HToEh6ZHZKrIpA83+0w6fxhbXbT3+6gXv6xjUqhO8N9kftuPhIWcuXzZ4CqzqXsfYwpH8hIASEgBAQAhABZoU3gQgwK0CVLoWAFQmsd7uPPmvPIWuKRFjSrpQyY2CjIKMwoyX54YH6C/lacagmu9YEBu3RaZOup+2/+hTtl560uvhYc9oLA/85r9L7mOYXFW3Tufvotfqcsmpf2al04BAGb7igUvcG1c2LrpVzRMXQ5JpCQAgIASEQwwiIALPCgosAswJU6VIIWInA+4+fUWHSPrXna1n7UqgSzLq93MS9eOD9Fhu7l0eRTI5WGkXEumWEqdS4Pfj4+TNODK6B1Enj6+rw46fPKDp6F3zefoCl910ZDqDT8tPYc/mxrr1pugYejoOYaug8KiDV8PzI2kgSP8DpsOyEvXj431u7SDMNx7TlFCEgBISAELBBAmYJMLohHj9+HMuWLVP/fffuHTTDjYQJEyp3xBs3bmDo0KHIli2bDU43coYkAixyOMtVhIAlCCw6dBPjt102adAwbttluBy6qdzz6KJni02bQ9W8qbHUzAjTiM2XsPzYbfSvnQfdq+qLnJnDwO/9RxQeuRMUumeH14qUdENT42OKJgsVT23mjKbFM+LG0zeoPu0AUiSOhzPDapozLTlWCAgBISAEhEC4CegWYP7+/pgzZw7mz58f5GKGjofr16/HwIEDMWnSJDRu3Djcg7L3E0WA2fsKyvhjCgFGRRgBoSHF5h4VUDhjshBTP+fljW/nHlXGDTRwsMVWdeoB3Hr2BovalkCt/GnMGqL7PW80nHMUOVMlwZ6+lc06V8/Buzweo/OK0yYFrp4+LHXMiuN3MHzTRdTIlwaLfyihDFdGbr6Eb4tmwMzviljqMtKPEBACQkAICIFQCegWYDt27ECfPn1UxIuOiMmSJUO3bt1U5xRlTk5O8PDwUEWaa9eujcGDByNevJhZh0QEmHzqhIB9ENBMNsKqm6WlIa7rVg7FsyS3qcmduv0CzRYcR6qk8VX6Yexy5xXLAAAgAElEQVRY5g+v4uT98Hrhq8w7CmYIKULN7/HLGbS6p+W9qRpcEenb3HPpaMlUTTYWqv7pzzPYd+WJxeuOmTsuOV4ICAEhIARiFgFdAoyphiNHjgRF2O+//46iRYtCqw1mKMAePXqkRFnixIlVtMzR0Tb3S1h7iUWAWZuw9C8EIk7gkc9bVJ68H/4fP2FPnyqBxhvGetbSENuXz4oR9UMv1BvxkZnXQ9+17ljndk+lDzKNMDztt32emLbrGjpWyIZh3+QPTxdGz/n8GSg6Zhe8fd/jyMBqyJg8ocX6Dm9HjeYexVkvb8xuWVQZgzBFMrg1fXj7lvOEgBAQAkJACOghoEuAaWKLe8AWLFiAFClSGBVgxkSZnkFEt2NEgEW3FZX56CHw/I0/YseKFaV7fPSMUzum/9/u+PvMPTQrnhFTmjmHeqqWpkdzi5NDaphzGaseS/MM7q9iOzygqrJ0D0/zeumHipP2WTzNUovO5UuXFNt7VQrP0Cx+zrwDNzB5xxUVMXz66h0KpHdQBhzShIAQEAJCQAhEFgGzBBgHpaUbGhNbz58/R9euXRE/fnyJgHl6RtYaynWEQJQToPj6bsFxtCufFa3LZIny8YQ1AKaddVh2Sh12/NfqSJcsQVinKKfEey/98HfXsiiZ1SnM4yPjgD9P3MWQDRdQMVdK/NHxi7V6eK7dfOFxnLz1QvXD/sxpjHB1XH4KvWrkQqVcqQJPpbkJDUJYWLlX9VzmdGm1Y7lXjnvmtPZTlRwYYOM13qwGQzoWAkJACAiBKCGgS4D5+vpi2LBhOHv2LBYtWoScOXMajYBpe8CqVKmiUhYpxGJikwhYTFz1mDtn3nw3W3gMno9fq/1R3Cdly43jbDTvqDLe6FE1J/rpTNvTxETbslkxuqFtpCF+89sRXLz/H+Z9XwxfF0oXIeyrTt7Fr+svmG1I8e7DJ3y38DhoVsLWs1ou9K2VW/1/bW8Zo1+MgtlKqzHtIK4/fa2Gw+LLLMIsTQgIASEgBIRAZBHQJcDUj9SqVRg+fDh69eqlolw+Pj5BTDgcHBxU1Gvu3LnigpgrFzwlAhZZ72G5ThQSoPhq6XIclx++ChwFCxazcHFkNd74u3t5I2WS+CqtLAX/myQeHBLGDTEERuoa/HYE9739zC4KrBVlzpIiEQ72r2rV6R24+hSpHeIjfzoHk9fxeOiDr2cdVimftHePaPPxe4/Co3YhfpzYODeiFhLG/UpXl+2XncL+K0+QKkl8tZ+KwrZ8zpT4uXouJcxssYg1UxCZisg5Xh5TR9c85SAhIASEgBAQApYioFuAPXnyBP3798epU6fw/fffo2HDhirKxTZhwgTs3bsXs2fPRpkyZTBlyhS1TyymNomAxdSVj1nz5g17SxdXXHrgo/bRZE+VBP+6P0C/WnnQo5rl60mZoqu57AV/PWfqJCrtrb5zevXS2/ef0HzhMVBIMRqzrlt5JIqnT2RofVeesh93nvuqWlusuWWtpu1PG/x1PnSulN3oZX5Zcw4bz95Xr/M4S7SuK89gx8VHypKd1uxhNc0AhCJwQ/cKoAFjt5VnQHGoNUuOL6zx6H2daYhklz55QnxXIpPe0+Q4ISAEhIAQEAIWIaBbgPFqt27dUqmIJ06cMHrxvHnzqmLMTFGMyU0EWExe/Zgxd9bP+n6xqxIzFF+rfiyD609eo/H8Y8pNcG/fKpEGgrbitBcvkTU5YiEWHvu8xd0XvoHXZ32rntVzYduFh9h56ZGK1GzuWUHXvq/gk1h69DZG/XsJFXKmxMpOEdtzFRqgalMP4OazN+qQMtlTKJv09I4B+9SuPnqFQevOKyc/tv39qiBbysQW4a3V7KqcOxWWdygVap8Tt1/BgoMBUaS1XcuikIF9/dCNF7HS9Y463xat+y0CSzoRAkJACAgBIRBOAmYJMF6DBZldXV2xbt06PHz4UF2WNcDq1q2LmjVrIlGi8LlwhXP8NnmaCDCbXBYZlIUIMM3sexdXuN31DhRfWrofnfToqGeNelLGhk/RV2P6QaR1SADXwdWDHMJo3JSdV4OIMabXURCEt9YV0+so+Hz9P2J378rIlSaJhah+6eal73sUHb1L/SFF4nhg2mTSBHEwvH4B3Hr6WqXOsWVwTIjxjQuBYsmSjWmIjG5SRFNMG2vLj93GiM2X1EsrOpYKYryhHb/5f/zpzihNCAgBISAEhIAQ+ELAbAEm8MImIAIsbEZyhP0S+H7xCRy9/kztT1rduUyQvVZTd13FnH3XLV5PyhStZcduY+TmS2heIhMmNy1s9DAeM2vPNVDYLGxTHLULpI0Q/DFbPLDkyC20KJUJExsbv2ZELqA5NDKit7htSQxaf16lBRq2rpVz4JcauZEgbuyIXMrouRRWFFhty2bB6IYFQxxjKELDSlV84/8Ric1M87T4hKRDISAEhIAQEAI2RkAEmBUWRASYFaBKlzZBgFbjey8/AfdX/dO1HBwTBTW6oLMcHeYYuTkzrKbVx0wreQqWsIQARcOpWy8ssm+L6Y2VJu9Xc6P5Bfc/WbJpBhFdKufAr3Xzqq7XnPJSQjNP2qSY2KQw8qa1nqPg7ee+qDJlvzLjODG4Rog1Xnz4FsZu9cA3hdNhTqtilpy69CUEhIAQEAJCIEYQ0C3AHj16hM2bNyNx4sRo1KhRYKrhpUuXMG3aNJw8eRJ16tRBnz59kD59wKb3mNpEgMXUlY/e8+7+lxu2nn+o9hv93bWcKtprrNWbfVgZc5hKTbMkpQLDd4BRFrdhNeGU2Ph4LHk9ra9Oy09jz+XHysKeVvaWbC0WucL15nO4tC2BmvnTBHbNosF0eYyM1uWPM2q/nDFDlXIT9+KB91ts6F4eRTM5RsZw5BpCQAgIASEgBKIVAd0CbP369Rg4cCD69euHzp07I1asWLh79y66d++OK1euBEIpVKgQ5s2bh7RpI5bmY8+URYDZ8+rJ2I0R6L3mHDacva8sxdf9VB6pQxECCw/ewITtV8yuJ2Uu+VO3X6DZguMqKrTzl0rmnh6h44/deI5WLq5KhLoOroE4sen/F/H26TOQb9h2sLaWNaJrekfIgswszMxI5okhX+ZHI5Of/nRT6afbelXU250cJwSEgBAQAkJACBgQ0CXAaLwxfvx4bNq0CcuWLYOzs7PqQhNlP//8M3788UcVIRsyZAgGDx6M9u3bx1jQIsBi7NJHy4lrN+PpkiVQka+MYdT4euTzFmXG71UW727DalllnxJBz9zjiZl7rqFTxWwYWi9/pLOvOeOgKj79W8uigVb3ER0EiyqzuDKjjHQ3jMqmFXme0swZzYpnVENpMv8Yztx5adE5R+Uc5dpCQAgIASEgBKKCgC4B5u3tjR49euDly5dYsGABMmXKhA8fPmDy5MnYs2cPFi1apKznvby8VJFm2tGPGTPG4o6ImgPjP//8g+PHj4PjSp06tXJfZFTOWOojx7RkyRJs3bpVHU/x2KFDB9SqVQtx4sQJwpz97969G0uXLoW7uzscHR1Rr149k32bWjARYFHxVpZrWovAsI0X8YfrHfSumVvV1dLTWID3xK0XmNWiCBoWCbuelJ4+gx9Dy3u3Oy+tXpPL1Ni4L2vguvMWjQZppiJNimXEtOYBD7qiqtFFsueqs8ieMjH29auianux8LOlo35RNT+5rhAQAkJACAiBqCKgS4C9ePEC3bp1U2OcP3++sp338fFB79698e7dO8yZM0eJFWPHWXJiLALdqlUro11SAM6dOxfZs38pWnrz5k2VInn9+vUg58SNG1cVlW7Xrp1KpWSjoHRxccH06dND9F+wYEFVZJrCU08TAaaHkhxjLwSKj9mtrNBDsyUPPhdNnFTNkwpL24deTyo8HLjvi/u/2K6OrasMI6Ki0S6e7oqW2g/186qzoH37pCaF8V1Jfd831py3tt/rj46lsfa0V0ChbSvse7PmHKRvISAEhIAQEAK2RkCXANPEFv/LCFiKFClUUWZGncqXL69SDuPFi2d1AXbmzBns2LEDTZo0UUKL13z8+DEWLlyIP/74Q4kqjkkTVCwKzWgW0yJ5Tvz48eHp6YmhQ4fi1atX6rzMmTMH3MRdvYpOnTohS5YsKnqXNWtWJS5XrlypRFmvXr0C976FtYgiwMIiJK/bC4HjN5+j5SJX5bq3w4x9VqwjxXpSbHv6VgaLIVuy0QCDRhgsUkwr/KhqrDM2d//1UG3wzRmbVkdtT5/KymkyqptWeNo5oyPc73krocs9b5Z2fozqecr1hYAQEAJCQAhEJgFdAkxLN/z777/x+++/o2jRoti2bZsSJSNGjEDr1q3VmDVRlidPHkycOBFJkkTODQQjXBRPDRo0UC6MbIzGMfrFFEXuX6N7o9a0sTNyV7t2bfVn7mejMKMoq1jxy+Zypi2yT0bKKOgcHBzCXB8RYGEikgPshMDgDRfw14m76FsrN3pW05d+qE2N9atWn/RCyaxO+LtrWYvOWKtVZcylz6IXCqMzQ8t2mmZw35ueRkdDihmtgDXP4d9Kjtuj/nZ+RC093Vj9GEYaS43drZwm2axV+8zqE5ELCAEhIASEgBCwIQK6BBjH6+rqqtIQKWiKFy+uDDeSJ0+OxYsXg4JLO6ZNmzbKgGPAgAEh9lhZa96aAOvSpQtatmypLsO/MRpGy/yePXsGubSx1xjl2r59u9rPli1btiDHh/aasTmJALPWSku/kU2AUSxGs2gIQWMIc9p//39e5Sn74e37HoZGDub0YepY1hpjzTFLpf5FZEx0C6RRyaSmhfFdCeNpg4we0byCe9b434f/vUXw9EwWW+668gyq5U2N39uVjMiQLHouHS3pbMm2u3dl5EoTOQ/WLDoJ6UwICAEhIASEgA0R0C3AGAVjmt+UKVPw/v17cB8Vbem///57JbQ+f/6MWbNmqX1YhpEla89V27vFqBavraUUavvFJk2ahMaNGwcZhmYWUr16dRXd8vPzU5G8O3fuBO5xMzyBomz16tWBZiOGr127di3EFGncwVRHaUKABBglefifXwgYRTI5ImFcfRGTqCB55PoztF58AvnSJcX2XuGzead1PS3sGdU52L+qRVLXHvu8Renxe5EkfhxcHBUQwY7K9veZe+j/tzuKZ0mOdd3KhRgKRRXFlbE2qG5edK2cQ700bttluBy6if6186C7hWuLRYTPk1fv8KfrHaRIEg9ty2aNSFdyrhAQAkJACAgBIQBAtwDTaDElj+YWFDopU6YMhEgHQQ8PD/C/+fPnj5T0Q4q+jRs3KjdGRqnKlv2S5hSaANPMQkqXLq1LgDE9kaJSc3s0fOf89NNPId5IdFIUASafL40ALdlpzR680R2QLoG22ujwRzONiKb5cQ8Z95I1L5EJk5sWNnu65+/9hzf+HwLPO37jOWbv9USt/GmwqG0Js/uz9Ams2VVs9C6Vpnegf1VkTZEo8BJnvbzRaO5R9e+KuVKicu7UqJQ7JT58+qwcBdmYnsk0zcbzjsLtrjdWdy6LMtmdLD1M6U8ICAEhIASEgBCwEQJmCzAbGbdyLeSeNLoTjhs3DlWrVg10NOQYIysCZoyHpCDayrsk6sehFSWmdXcOAyOKK49egSl6oxsWRNuyWSJ1oKdvv0SJrMnDvKaWfhhcVIR5YrAD7jz3VamIhmLDVB+Mbu289AgX7/vg0oP/cOmBj8nLRQU7U4MZ+M95rDntpaJZjGppTUtPbFMmC8Z8WzDI6ZrBRRqHBNjco7yK6rFdHlPHpiOj5q6/HC8EhIAQEAJCQAgEJaBbgL1+/VpFuJhuSFt2OhCyPXv2DKtWrQIdCllb69tvv7V4/a/gi/b27Vvlxvjvv/9iwoQJKFmyZBDxxeO1fV4tWrQIdEbU+tH2jNEZUdsfxgja3r17A+ucaccyyjZt2jTs3LnT6P4wEWDykTJFgAKr3IS9KjJCK3bu+dEaa2SxVhZbZO5jcjl8E+O2XsbExoWVoYKptv/qU7RfejJC6YeGff+2zxPTdl1DjlSJlZ29qcZr8tqGLU/apHBMGDfEKZObOiOLQbQpKt+J3NvFumQU2qeH1lRD2X/lCdovO6UKUR8eWA2pksQPMcQ2S07gsOczZHJKBK8XviiUIRn+7VkhKqci1xYCQkAICAEhIASsTEC3AKMAYTFmGluw/heF2PPnz5X1++HDAak0bCyKTNdB1gWzRuP+Le7XoiDkdVj/y1gTF0Rr0Jc+zSFAoUPBY8oqffHhWxi71QOMgGzrVREpEgc81LBW23v5CTouPxXY/dhvC6J1GePRt35/u+OfM/csWvOp+rQDuPH0jck+NRGTOml8DK9fALnTJEHuNEmthcPi/TLKx2jfkh9Konq+1Kg98xCuPnqFX2rkxi81jDtIvnjjj1ozDuLZa381ng7ls2F4/fwWH5t0KASEgBAQAkJACNgOAV0CTLOhZ02sZcuWoVSpgMKqmihr2LChsnxft26dsnE3ZnxhiSkzrfCXX35BpUqVlMsiXRhNNY45eB0wRu1omjF8+HBddcB8fX1VdE/qgFli9WJWH/e9/VB+4j416S09K6BghmRGAXT/yw1bzz9EuRwp8NeP1qtn5fHQR+0xevv+k9qjRGMQNqbFMT0ueGORY2N7miKyiqduv0CzBceV/TrrXDHqY9iaLjgGpkcO+Toffqz0paB6RK4Zmedq6aa1C6RFnYJplfkI62Ud+7V6qCmFB689xQ+/n1RDndOqGL4pnC4yhy3XEgJCQAgIASEgBCKZgC4BphVivnv3bmAanpaaR9G1ZMkSZbyhpf3R3GLkyJGq8LElG80w6LwYWvvrr79USiIbzUIoDDmu4I39dOzYMTB1UXNTpNgK3vLmzRvEYTGsOckesLAIRf/Xe60+h03n7qNhkfSY1aKoyQn7+n9Eg9+OKEv1n6rkwIA6X/YPWYoSLc95jaev3wVan4/Z4oElR26pSwQXYVqkrEB6B2z9+UtNPEuMR9srVSFnSqzsVDqwy0OeT9F2yUmVwnd0UHUl0uytkW/JsXvUsJluyH+HFmU0nN+W8w+RMXlC0BlTmhAQAkJACAgBIRC9CegSYJprIFHMnz8fTk5OKgVw0KBBePr0aeDfjB1nSXzmCjBemymLNOo4cOAA6ODo7OyMDh06qP1qTKM0bHRwpJ390qVL1X43plHSUp5pl+nTp9c9FRFgulFFywNpHFFvdkBaLvf+ZEqeMNR53nz2BvVnH1YRJwoeCh9LNQo8Rr5o+kE7+XXdygcWCx668SJWut5Rl+L+NNqNX3/yGnT1Y6MYpCi0ZGNNsSpTD4Cpd7NbFkUD54DPFXmR28gGBdCunP1anXdafhp7Lj9Wc2KkkQYm0oSAEBACQkAICAEhYEhAlwCjcOH+L9b/0gSYVkurcOHCgdEuawswe1k6EWD2slLWGWcrF1ccu/EcnSpmw9B6+vbzjN92GYsO3USVPKmwrH1Aim9E2+t3HzDgn/PYduGhishs7lkB6ZIlCNKtZjUf/Fo0t/ijY2lkDpYmGNEx8XytNliqpPFVgecjns9UAWLuhTsxuLolLhFlfezyeIzOK06r6y9sUxxMR5QmBISAEBACQkAICAGzBRgjQzS84J4vLd2QxhtdunRRe7IYIWLTRFnatGnV/isHB8s9ybenZRMBZk+rZXqsU3ZexdpTXqhbKB1GNywQ5qS4l4dCisYLLBLM6Bf3AOlp3r7vUX5igGPi2i5lUSpbxOpAnfPyRs+/3OD10g+J432FtV3LmYysjf7XAx8/f0au1EmQP50D8qdPppz7rNk0kUoTENebz1XkbXyjQmhVOrM1LxspfW+/+Ai007fnSF6kgJKLCAEhIASEgBCIoQR0RcDIZseOHapoceXKlVG9enW4uLjgyZMn+P3331G0aMAeFzc3N7Ru3RrNmzfH4MGDA63qYxpbEWD2v+KMHhUfszswHY8Fk1k42Vhj6ty4rR4q6sVGwTOuUSF8W9T48abozNl/HVN3XkXhjMmwuUf4rcjn7r8Oikc2pjPO+764zdi1a3M3rA3Gv3H/05GB1ez/jSMzEAJCQAgIASEgBIRAGAR0C7A3b94od0O6Amqtffv26NevX6DQWrRoEaZMmWI1F0R7WU0RYOFfKUZs7r0McOgzbIUzOiphE1nt7zP30P9vdzgkiAOftx+UKQRFEWtSGbbhmy5ixfGAfVQ8pn35bOhWJQeSGalbFdbY6VBYYdJeZUm+qG0J1MqfJqxTgrx+94UvGM3S9iD9UC4rRjUIO3Jn1kUseLBWG4xdTmnmjGbFM1qwd+lKCAgBISAEhIAQEAK2SUC3AOPw6RR48eJFFekqVKiQinxpRhYsjrx582ZldNGgQQMwDTGmNhFg4V/5mjMOwvPx6xAdFMuSHCs7lg40kAj/FfSd2XzhcZy89UIVLD5954WqicX9UDTJSJogjkox67ziDNzveasO25bNip+r51IufhFpK47fxvBNl5AzdRJl1a6ncd/RimO3ceT6M3U40x+nNnNWVui23mbv9VRDJDtpQkAICAEhIASEgBCICQTMEmAxAYgl5igCLHwU15zyAk0hHBPFRR6DArzXHr/CS9/3KJnVCSs6lgq1plL4rhz0LNbIqjJlv4ponR5aE/HixFZOgkw1rJk/DTpVzI6fVp7B8zf+cM7oiIVtiyOtQ1Bzi4iMo+KkfWrvVlhRoR0XH2H0lkt44P1WXY7jbV4iE7pWyYEMjqE7L0ZkfHKuEBACQkAICAEhIASEQPgJiAALPzuTZ4oAMx8q0+8qTt6Hp6/eYcZ3RdDIYP/UrWdv0HT+MSV4ymZPgaXtS1nVJIL7sLgfi3u+uPeLjSKnzqxDoI261ljAmDW0LN02nr2PX9acU46Fx3817grIcVSYtE+lR1JssXBxk2IZVXROmhAQAkJACAgBISAEhIDtEjBbgPn5+anaX/fv3zc5KxZgLliwoJhw2O6629zINAMKU8V/Waj4uwXHlQhjEd8l7UparVhv2Ql7weLFLBTMa2mNKX6tF59Q153YpHAQkWhpoLVnHlJuipObFlZRreBNK6RcPV9qLPkhoPC4NCEgBISAEBACQkAICAHbJ6BbgHH/Fwshjx49Gu/evQt1ZsWKFQusF2b7CCw/QomAmceURXmZdkcLdtaeqpjri+gx7MlQhLFwMCNhlm6HPZ+hzZITJqNPLFzMVMjgZhyWHofrzRdosei46nZbr4rKHl5rWook/723bxXkSJXY0peX/oSAEBACQkAICAEhIASsREC3AHN1dUW3bt1UMeYqVarA3d1dDalhw4ZIkCABfHx8sGHDBpQqVQqlS5dG48aNkSRJEisN27a7FQFm3vqM2HwJy4/dRvmcKfFnp9Khnmwowha0KY46Fi5022v1OWw6dx89quZEv9p5zJuIhY+euusq5uy7rsw/KMJorsHWcfkp7L38BO3LZ8WI+rbrcmhhHNKdEBACQkAICAEhIASiBQFdAozRr8mTJ2PlypUqskUHRIoxNv7byclJOSROnToV165dU1b0KVKkiBaAwjMJEWD6qdFsovLkffj0Gdj5SyVdkSWKNYq2iNbLCj5K7qsqOW6Pqv11eEBVZHJKpH8iVjjyw6fPau8biyrT/MOlbQlokTGHhHHVGMNjd2+FoUqXQkAICAEhIASEgBAQAjoJ6BJgjG717t0bjx49woIFC5S4GjZsGM6fPw/W/sqWLZu63NmzZ9GhQwcMGDAALVu21DmE6HeYCDD9a/rTn27YduFhEMOLsM6mYUfp8Xvwn997rOtWDsWzJA/rFF2vz9zjiZl7rqn+2K8tNArUOjMOqvRMGn786XoHVx69wsgGBdCuXFZbGKKMQQgIASEgBISAEBACQsAMAroE2IsXL4JEvBImTIgRI0bg9OnTSoDlzJlTXZICjZExCpBRo0aBx8XEFlkC7A/XO9ji/iAE4sbFM+I7I8YNtrYWtHWvN/uwGtaRgdWQMbn+98vkHVcw78ANlYLIVMTwNka91pz2wrKjt3Hf2091w9pfLUqFNL4I7zUiet6W8w/R4y+3wG6yp0yMff2qRLRbOV8ICAEhIASEgBAQAkIgCgiYJcA+ffoUGAGbPn06Fi9erNISabrBFlyoMTUxJrbIEGC7PR7jxxWnTeKd1txZ2ZLbcuu68gxYy4pFjEc3NG8vE+3qmS7IdqB/VWRNYV66IB0Glx27jVUn7wYiSpE4HlqUyowe1XJavdaYuesy4J/zWHvaS522tF1JVM2b2twu5HghIASEgBAQAkJACAgBGyCgS4D5+vqqlMNjx45hyZIlyJ8/PzZt2oR+/fph6NChaNu2LWLFioW7d++iS5cuKkVxzpw5cHR0tIEpRv4QrC3AuCfou4XH1V4lmjDkTZc0cJLHrj/Hb/s81b9ntyyKBs7pIw0AxVSdgml1XY/FlWvNOKSOPTqoWrgKB/dd6451bvfQukwWjNVZj4vRJKbxHb/5PHCc+dIlxY8Vc6BxsQy6xh4VB/m9/4i6Mw+pfWl0ipQmBISAEBACQkAICAEhYJ8EdAmwz58/Y9q0aVi4cCEmTZqkHA41scVpjxkzBpkzZ8aKFSvUMZ07d1Z7xuLEiZlFYa0pwO6+8EWDOUfg7fsefWrmxs/Vc4V4583dfx1Tdl5Vf1/UtgRq5U9j9XfnhO1XsPDgDeROkxQD6uRBjXyhX/PnVWex2f0BWpXOjPGNCoVrfJcfvkLdWQEi7uzwWkieKK7JfvZffYpf153HI5+3gcew0PIP5bKiWGb7eFDAlM24X8VSjKUJASEgBISAEBACQkAI2CcBXQKMUztw4ADmzZuHIkWKKHEVN25cuLi4gKmIho37wWbPnq32gcXUZi0BRtOJhnOOgHWgGhXNgBnfFTGJWCtszAOsnbJ24tYLFZEzbIUyJEPfWnlQJU+qEGO8+ewNqk09oP4e3uiX1ikLI7NAcu+audHLiBjVjqsx7SBoYZ8qSXy0LptFCT/+fzZt7AkAACAASURBVGlCQAgIASEgBISAEBACQiAyCegWYMYGRev5Xbt2Ye3atWCaIlMTO3bsiEyZbMfAIDJhateylgBrPO8o3O56o3Q2J6zpUjbMqbGGFGtJsW39uSIKpP9SzDfMk3Ue8OrtB9ScflBFlmj8kdEpIVwO3YTP2w+qh3I5UmBhmxJImuBLNLTP2nNY73ZfGV3Q8CIi7eC1p/jh95NwTBQXJwbXQPw4sUN0t//KE7RfdkoJrlNDa0TkcnKuEBACQkAICAEhIASEgBCIEIEICbAIXTkanxyWAHvg/RZjtlxCyWxOKJnVCYwWhdXogsf9SzSb2NSjgu76T5q1es7USbCnT+WwLmP261rh4lxpkmBLz4pKAFGULT16C4sPBwixPGmTYmXH0kiVND5oq15x0j51ncMDqyGTGc6HpgZXc8ZBeD5+jbmtiqFe4XQhDtOiZCyszALL0oSAEBACQkAICAEhIASEQFQRCFWAce/X9evXsWXLFpw5c0aZa9SsWRPVqlVDokTmuc5F1QSj4rphCbD6vx3Bhfv/BQ4tYdyvVO2p6vnSoH35kLWdJm6/ggUHb8AhQRxs+bkiMptZILjZguM4dfsFfqqSAwPq5LUYkn/dH6DnqrOqv929K4MizLBxz1LbJSfw/I0/0iVLgJWdymDRoRtYc8oLzUtkwuSmEYt+adfacPY+eq85h5RJ4uHggGpIHO+rwGEYmn2cG15LRcqkCQEhIASEgBAQAkJACAiBqCJgUoBRfG3evBlDhgzBu3fvgowvb968mDFjRmD9r6gavK1eNzQBNnTjRax0vaMESc38aXHE8ym4J0prZbKnwMwWRZDWIYH6E8XKwHXn1f8Pb9Fhrxe+YJSIBYw3di+PIpkibjpBYdN43jG8fvcBoxsWRNuyWYwux2Oft2i/9BQ8HvooAamlJloq+qVdtPnC4zh564UaB8ejtUHrz2P1SS+0KZNFFTKWJgSEgBAQAkJACAgBISAEopKASQHm4eGhLOWfP3+O+vXrq8gXhRidDt3c3FCuXDlMmTIFqVNLPaLgC2hKgHHfE/c/sW3qUR7OGQOE0J3nvth75THmH7gB1rdySBgXU5s5I+5XsdF+6Ul1TEQt5Vccv43hmy4hW8rE2B/BIr7Xn7xGSxdXNVbWo6LJR2jN1/8j6Hq45/JjdRjrk7FOmSXbjadvUH1agLGHJjJfvPFHsTG71d8O9q+KLGbWCrPk+KQvISAEhIAQEAJCQAgIASFAAkYFGKNfs2bNwty5c9G9e3f06NEj0FL+zZs3GDt2LP755x+MHj0aLVu2FJLBCBgTYIwANZp7NLB2l7FUQx+/9/h1wwVsPf8wSI/9auVRxYEj2uhUSMfCHytmx5B6+cLVHdMKW7m4go6MtENf26Ws7rS+8dsuY9Ghm+EqnKxnsNN3X8PsvZ5gXa/tvSph1l5PzNh9DTXzp4FL2xJ6upBjhIAQEAJCQAgIASEgBISAVQkYFWDGCi8bjuLs2bPo0KED6tSpg5EjRyJ+fLHzNuQTXIAx7a7e7MNgKiALFS9oXTzURd1+8REGrTuvRM63RTNgZih28+a8O+699EON6QdUKuLevlWQI1Vio6ezxtiW8w9QOluKIPu63O68RJslJ/DG/6MyDvmzU2kVrTOnud/zDoz8mXOe3mMrT9mvIooD6+TFkiM38ey1P1Z3Losy2Z30diHHCQEhIASEgBAQAkJACAgBqxEwKsBevHiBbt26qYvOnz8fTk5Bb14fPXqkXo8XL57R1602WjvpWBNg3B+14vgdZaDB6BZT4GgHnyR+2AWqn75+p+zcB38dvkiVKVR/nbiLwRsuqD1mO3tXMuqmqEXK2AeLG5fPmRIZkyfCsmO3lHijYcjyDqV0zSOyl+zYjecqQqc1Wu+TuTQhIASEgBAQAkJACAgBIWALBMIlwMISaJE1sZUrV+L8+fMYNWoUEiZMaPSyXl5eWLJkCbZu3Qpvb284Ozur6F2tWrUC0yq1E/39/bF7924sXboU7u7ucHR0RL169dC5c2ekT59e97QowH6at1VZsWumE/nTOWBWi6IhnAJ1d2rBAzXr+Iq5UuKPjqWD9Pzr+gtYdfKuSiuMH+cr0ETDsFXImRIuP5QAnRtttfVd6451bvfU8Mi8YRH9a2erc5JxCQEhIASEgBAQAkJACEQPAnYpwCiUKLyGDRuGQoUKmRRgN2/eVHvYaKVv2OLGjYv+/fujXbt2iBUrlnqJRaVdXFwwffr0ECtbsGBBzJ49W3eBaQqw901mqn6KZXZEj2q5UC2v7ZiVMIrVcO4RXH30Cj2r5ULfWrnVWJcfu40Rmy+pWl50XCyYIRnO3/sP+68+wd7Lj1XUbJEd7KWi+Ub/f9yRPWWScO91ix4fb5mFEBACQkAICAEhIASEgK0RCFWA+fj4oE+fPkiSJGh9p9evXwcKFWOvc08YRQtTFC3d1q9fj4EDBwZ226hRI6MCjIKKVvmMZtFKv0mTJmqvmqenJ4YOHYpXr15h4cKFyJw5s+rr6tWr6NSpE7JkyYIxY8Yga9asyvWRUTaKsl69eqlImCbYQpsXBVjnOVtQKXcqlM5mm3uPuB/t69mHVdHkJT+URLw4sdX+LjaJGln6XSv9CQEhIASEgBAQAkJACAiBAAKhCjDazYenFStWzGp7w/QKMKZJMvpFm/zx48cjceIvhhPbtm1TgmrOnDmoXbu2miL7pTCjKKtY8cueIaYtUmRSeFHQOTg4hIkkrELMYXYQSQccuf4MrRcHiC6tWbpYcyRNRS4jBISAEBACQkAICAEhIATsgoBRAcYIFwUJI2DhaRQpjRs3DhE5C09fps7x8/PDiBEj1MvG9oAx7ZARK0bIevbsGaQbY68xyrV9+3YsWrQI2bJlC3J8aK8ZG5+9CDCOfeYeT8zcc01No3q+1CoaJk0ICAEhIASEgBAQAkJACAgB6xAwWYjZOpezXK9hCbBTp06hVatWmDRpkhKDho3GHF27dkX16tVVdEvr686dO0YjdxRlq1evVuIsZ86w63HZkwD7/BloveQEHnj7YcvPFZE4nu2aa1ju3SM9CQEhIASEgBAQAkJACAiBqCEQIwWY5uJYunRpXQKM0UCmKxoTYFoKo+Hy0fyDe83spdGp8eUbf2WTL00ICAEhIASEgBAQAkJACAgB6xGIkQLMkhGwjx8/hlidvHnz2pUAs97bS3oWAkJACAgBISAEhIAQEAJCwJBAtBVg2j6vFi1aqL1gho2v0fGQzoja/jDu89q7dy8WLFgQxG7+8+fPmDZtGnbu3Gl0f5ixt5M9pSDKx0EICAEhIASEgBAQAkJACAiByCMQbQWYuCBG3ptIriQEhIAQEAJCQAgIASEgBISAPgLRVoAZqwPGumTXrl3D8OHDddUB8/X1xapVq8JVB8ye9oDpe6vIUUJACAgBISAEhIAQEAJCQAhElIDdCbDgdcAMAQR3PKQZBmuBMeUweGMx544dOwYWVqZgc3FxCSwwbXg893TNnTs3sGhzWNAlBTEsQvK6EBACQkAICAEhIASEgBCImQSitQDjktJwY/bs2Thw4ABYVNnZ2RkdOnRArVq1ECdOnCCr7u/vDxZpXrp0KTw8PODo6Ih69eqpPWTp06fX/Q4RAaYblRwoBISAEBACQkAICAEhIARiFAG7E2D2sDoiwOxhlWSMQkAICAEhIASEgBAQAkIg8gmIALMCcxFgVoAqXQoBISAEhIAQEAJCQAgIgWhAQASYFRZRBJgVoEqXQkAICAEhIASEgBAQAkIgGhAQAWaFRaQAkyYEhIAQEAJCQAgIASEQfQiIw3X0WcuonokIsKheATu5/qxZs5A9e3bUr1/fTkYcM4fZr18/tGnTRpnNSLNdArJOtrs2hiNr3rw5FixYACcnJ/sYcAwdZZMmTfD7778jWbJkMZSA7U/bx8cH7dq1A52spQkBIQCIAJN3gS4CIsB0YYryg+TGPsqXQNcAZJ10YYryg0SARfkS6BqACDBdmKL0IBFgUYpfLm6DBESA2eCi2OKQRIDZ4qqEHJPc2Ms62QcB+xilCDD7WCcRYLa/TiLAbH+NZISRS0AEWOTytturiQCzj6UTASbrZB8E7GOUIsDsY51EgNn+OokAs/01khFGLgERYJHL226vJgLMPpZOBJisk30QsI9RigCzj3USAWb76yQCzPbXSEYYuQREgEUub7maEBACQkAICAEhIASEgBAQAjGYgAiwGLz4MnUhIASEgBAQAkJACAgBISAEIpeACLDI5S1XEwJCQAgIASEgBISAEBACQiAGExABFoMXX6YuBISAEBACQkAICAEhIASEQOQSEAEWubzlakJACAgBISAEhIAQEAJCQAjEYAIiwGLw4svUhYAQEAJCQAgIASEgBISAEIhcAiLAIpe3XE0ICAEhIASEgBAQAkJACAiBGExABFgMXnyZuhAQAkJACAgBISAEhIAQEAKRS0AEWOTylqsJASEgBISAEBACQkAICAEhEIMJiACLAYu/cuVKnD9/HqNGjULChAlDzPjz58+4fPkyFi1ahD179uDTp08oVaoUfvzxR5QtWxaxY8cOPMfPzw8jRozAhg0bjJIrVqwY5s+fDycnJ/W6qb67dOmCMmXKIFasWDFgBcKe4ocPHzB58mQkSJAAffr0MXoC1+X48eNwcXHByZMn1brUqFEDnTt3Rr58+YKwfPHiBbp16wY3NzejfTVq1Cjw/cA1un79ulrTnTt34u7du4gfP75a+w4dOsg6GRCMynUytpCenp74+eef4eDgEORzF/Y7LnofYel1OnXqFFq1amUS2qRJk9C4ceMgr/Pzys/fqlWr4OrqiidPniBnzpxqnbJmzRq9F0Dn7KJ6nXx9ffH3339j9erV6juQ33umvlN1TilaHvbo0SP1ezJ48GCULFnS6ByDs0ydOjVatGiBli1bImXKlEbP4e/Upk2bsHXrVnh4eOD9+/fo3bs3fvrppyDHm+q7devWSJ48ebRkLpOK/gREgEXjNfb391fCa9iwYShUqJBRAcab740bN2LIkCHqy8+wxY0bF+PGjcO3334beHNvrgCjUOjevTu8vb2D9M0fuhkzZqBmzZrReAX0TY1MDx06hKFDh6ofK2MCjDcqCxYswKxZs0J06ujoiNmzZyvBpDVzBFhox/I9MGHCBDRs2FDfZKLxUVG9TsHR8oa+f//+OHbsGII/+IjGyxDm1KyxTuYKsDdv3qjP5O+//x5kvJkyZVIPuijEYnqL6nV6/vy5EhT79u0LsRTyvReAhPcHL1++VO/jhQsX4q+//jIqwAy/i4LDLFeuHKZMmQIKMsN2+vRpDBgwAF5eXkH+TqFn+BvI98mYMWOUUA7eeP8wfvx48DdQmhCwNwIiwOxtxXSOd/369Rg4cGDg0YYRD8MuGO1gNCpp0qRKhFGosV25ckV9sT148CDIDYMmwHiMqYia1j9vQvgDxxtE9lW1alUVteHNzK+//qqeAk+fPj1Gf3ly/nwirrXgPz7a38+ePRsYjRo0aBAyZ86Mjx8/qkgYf5z4hJGCVnvSqImq0qVLm4yoaX3zWAo7PvktUqSIei+8fftWPZWcOHEiChcurPpmlCWmNltYJ0P2r1+/xtixY9WDET7MYATbMPIs6xRAwFKfJ02AmboBNeTNm9YlS5aAUTF+/vr27YsCBQogXrx4MXVZQszbWp8nc9aJ0f4ePXqgTZs26jcwTZo04EPL/fv3q4dhMf17z9iDOWPvf77f+VCBvyGMxn///ffqN+TVq1f4559/lPji55D/ixMnjnov8L6DD2Zv3bqFnj17olmzZiqSZSwj5vDhw2p9vv76a/XAievEB7rz5s3D0qVL1XX5mjQhYG8ERIDZ24rpHK9eAcbwf79+/bB48WJUrlw5SO8XL15UaYj80tPSa8wRYEzpYHpc3bp1VVqB9uWrfWEzorNs2TI4OzvrnFX0O0zvjchvv/2mnj7yxi5//vxBQPAJLm8kyJKpo2zmCDBTVJn2wejpvXv3YvzNvS2tEx9sUHzx4QhvbphifOLEiRi/RnwfW2udzLmx1x5q8Ym/sSf/0e9bzPwZ2cI68TeSUUr+9hlGJLXfOH6+5syZE2MfEOoVYBRD/P1hFIoP7JIkSRL4hmDmBv926dIlzJ07V21NMBRswTNsgr+TeCwF1rp169Q65cmTJ/AQ7XPGhxx80CsPOMz/HMoZUUtABFjU8rf61cMSTJpQ++OPP9ReH8Nm7CY+rP4Mz9duWqZOnRoihS2016wOxQYvEJZg4g3L5s2bQ9wscCqa0OWPoCaUw+pPDwJNgPFHlBHMxIkT6zktWh8TFldrr5OWisrPDyMsadOmVaJDBFjQt52l18kcAcbvVEZQmLJVsWLFaP15iOjkonKd3N3d0alTJ3z33Xdqz1GiRInUdCgomALH1LmOHTvKPmVAZa1wD6SxCJi2hhkzZlTZGBpH7b3BzwOFrJZ6y+MZ/eIDirB+V0ITwyKUI/rpk/OjmoAIsKheAStfPyzBpKW2MUVm5MiRyJ49u0oT5HncP8a/Mc9ay8k2tgeMT754o8EfM0MzCE3cGfvS5o9fu3btVIQl+OZ1KyOxye7DuhHZtm0bevXqpYQsI5ZMw2C6BtM8jh49qtJBDSOVxp5e8gePa8mbCu5FCasxvZHXpOlKnTp1wjo8RrweletE8cV9ECtWrFBP7nPlyqWYiwAL+daz9DoZ2wPGSDS/u5g+ZXjTyfXYvn27+n47cOCAMs559+6dily3b99epUvJ0/qANYvKdWJ05eDBg+o3jlHlpk2bonjx4vj333+RIUMGJRLkoVPAOoUmwJi2OXr0aPD3ntsYuGec3GhCw71h/P3fsmVLoADTHhgy44YRMe5BZzSL9xFVqlRRaYza75P2/siSJUuILQ+8LgWcpF/HiJ/eaDlJEWDRclm/TCosARbaBletF8N9FKGZcHAvCg0b6tevr04NTYAZi9pE86UIdXph3YhwwzgFFvPhTTVDJ7bQjDUoxGbOnGnSzYr9a+569erVQ9euXQPTR2PyGum5YbTWOmlmOXTK5A2+oeGKCDDzBZi56xSaCUe1atXUjWCKFCnUg6vQXGI5Uj7UkM+UPgFmrXXi1fmZOnPmTOB34Y0bN5RYpjhm6jwjY3SllRa6ACMfU2ZbGjtD85mwDG2YDqo9YApNgMnDJ3ln2jsBEWD2voJhjD8sAcbT+SSJERZuaKUVrGZBzqdR3FfUoEEDtVHWVGMUZteuXSEMGyQCpv/NFZYAY09MCeTTRNpaa08MGXksWrQomObJp5Cm3Ao1N6u1a9eqH7fmzZubzJtndJJGHzTl4FNguQn5so5RtU403QitrIA2QlNmO/rfidHjSGuvE6ORd+7cUZ87lu5gilXt2rUDBdiFCxdUZIVGDiz9wWiAZmzE/TAxfe+r9i6LqnXi9Sm2+J3Jhxqa+RTNh/iQiw8SmZLPDA1jpVuix6dE/yz0pODSzZC/LYz6Mo2TRlGMhnGNjxw5oiJg2bJlC4ym8fuMaY18IMisG0PTDu33SfvekwiY/rWSI+2HgAgw+1mrcI1UjwAz1bHmPkQHPN5chNa0ei68GdFyvbUvbe3mxPB81sWh+5Sx/WHhmqidn6TnRsTUFCnIeBOh56aOP2gUV0+fPg1h2kCRxh9PPsFn+hRrrEiqVFDqUbVOHIUIMP0f8shaJz6wYkov0xCZpq19D/IhhjFXSqa8MVXb2Hei/tlFnyOjap2YEkqBzIePxvYtMdWXUU0936nRZzVMz0SPADN2tuaEzN8dzUlX+8wYpsxr52q/T7xv4fEsB8DfI0ZCgzvxanuUHz9+HKPNUmLC+y+6zlEEWHRd2f/NK7wCjE+j6CzESAvtXpkTH1rT8sD5dJc3HjQHEBdE/W+u8N6IsEAmN5CnSpVKiVna/4bWtA3m3LNi6FjFJ790pVyzZo3K4+c+FcMC3PpnEr2PjOp1MkZXUhBDUomsddL20NJqng8s2OhKScc3FkwvWLBgkMFpezmNmR5F70+O8dlF1Tr5+PgoZ14+dDJWCoUCjL9/esoOxIR1C68A4wMHPjii2OL+RzatqDP32/FhoOaOzNe03yda0lMYM/ooLogx4R0WM+coAiyar7u5AoxCisKJtueMZvEmnRvNtfoczJnnlyr/RtcjfnnyS3P16tUq/YB586zxxciJsTpgxM0vc97kSx2wL28+c29EuK58ys6bB+7X4npVqFAhsEPW8OKTQQoppnhw/fhvRid588cacZrDl1aQlLbLfOqrpeNE849GuKYXletkasAiwCIuwEL7PPE1PlRijbySJUuqhxyMdLFMBz8vrGVEi2ytnMbVq1dVlCtdunSBtRWZgqgdz/4o0JiiFdObJT9P5qwT148RFX4fMhODe75obPT+/XtlasSbf6bi08lS1insPWCG72Mt3Z3bEqZNm6as4/kdpRVi1thzy4Nh3TDD+whGk7XfJ2N1wPi+4QNDqQMW079B7Hv+IsDse/1Mjj54HTDDAw3NGjRBxFxsw8bQP23NeSNhmIYW2gbavHnzqh81w5oqpjbnsn9+Kcd0d73g9XAM1yD401dja8qbBN4scO+XYcQqtPXn3j7WX9F+ELVIJXP4TTVTBW2j6ccnxLRsYZ1EgIX9brPGOoVmrMHvMe6PZb1EwzqHTAtmrTbe0Bs2fl752eO+WmNFZ8OeYfQ4whbWid97jIJxb17wxnUNq0ZV9FgJ07MIzcipWLFiQVJsTX1GeE/AzAzD+l28Ih/20c2X9xPBW/Dfp9CMwngsa+3RQVGaELA3AiLA7G3FdI7XHAF27tw5dQPBJ1C8Ka9ataraHGtoKa9dlnnXu3fvVraymr2yttm2ZcuWSJkyZZAR8mkYn/wyjZFPsvgkmMWCWdmem5xj8k0IQZlzI0Jra6ZycP8CmXNfHpkbs5TnjyeP5zoxUsYbQVO22SLAwv5Q2cI6iQCLmnXidxg/Ixs2bMDOnTtVWrZmVMS9knSkDJ6uy+85fj8yDZEPofg6TW0YaTH2vRr2zKLXEdb4PIVnnZ49e6ZMjQyt0I2VVIle9PXNxhwBxt8kPthldgXFK6PBdEOmCUfwumDa1TX2zJ6hXT0f3LZo0SJEWQceH9yAivcpPJZpv0xXlCYE7JGACDB7XDUZsxAQAkJACAgBISAEhIAQEAJ2SUAEmF0umwxaCAgBISAEhIAQEAJCQAgIAXskIALMHldNxiwEhIAQEAJCQAgIASEgBISAXRIQAWaXyyaDFgJCQAgIASEgBISAEBACQsAeCYgAs8dVkzELASEgBISAEBACQkAICAEhYJcERIDZ5bLJoIWAEBACQkAICAEhIASEgBCwRwIiwOxx1WTMQkAICAEhIASEgBAQAkJACNglARFgdrlsMmghIASEgBAQAkJACAgBISAE7JGACDB7XDUZsxAQAkJACAgBISAEhIAQEAJ2SUAEmF0umwxaCAgBISAEhIAQEAJCQAgIAXskIALMHldNxiwEhIAQEAJCQAgIASEgBISAXRIQAWaXyyaDFgJCQAgIASEgBISAEBACQsAeCYgAs8dVkzELASEgBISAEBACQkAICAEhYJcERIDZ5bLJoIWAEBACQkAICAEhIASEgBCwRwIiwOxx1WTMQkAICAEhIASEgBAQAkJACNglARFgdrlsMmghIASEgBAQAkJACAgBISAE7JGACDB7XDUZsxAQAkJACAgBISAEhIAQEAJ2SUAEmF0umwxaCAgBIaCPwKlTp9CqVasQB8ePHx8FChRAmTJlULduXeTOnRuxY8fW16kcJQSEgBAQAkJACISbgAiwcKOTE4WAEBACtk/AlAALPvI6derg119/Rfr06S0yqevXr6Nz584oUaIERo0ahYQJE1qkX+lECAgBISAEhIC9ExABZu8rKOMXAkJACIRCQBNg3bp1Q58+fQKP9PPzw9OnT7Fjxw4sX74cT548Qc6cOTF79mzkypUrwkxFgEUYoXQgBISAEBAC0ZSACLBourAyLSEgBIQACZgSYIZ0nj17hokTJ2LTpk2oUqUKpkyZAkdHxwgBFAEWIXxyshAQAkJACERjAiLAovHiytSEgBAQAnoEGCkxAsYI2YkTJzBr1ix8/fXXgfAYKdu4cSMOHTqEK1euwNvbG3HjxkX+/PlRr149NGnSBA4ODoHHr1+/HgMHDjQKP1OmTFi0aJGKtrF9+vRJXfPPP//EgQMH8O7dO2TOnBnNmzdHy5Ytg/QrqykEhIAQEAJCIDoQEAEWHVZR5iAEhIAQMEFArwDj6atWrcLw4cPRtGlTjBw5EjTqYAtrH1m5cuX+r717CaUtjuI4vrwHGDA4A0PKIwNSXslEFCMZKMWMophIBpQMhEzICHmUyMDIQMpIMkZJygSRojySlKTc1v+23cM95x66Jmuf757cbpx91v+zTH79/3ttt2sWCATc7381gD09PbkjjwsLCyGr/3xfmowAAggggIAfBAhgfugia0AAAQR+IIAdHR1Ja2ur24GampqS9PR0d9fd3V13PLGhoUFyc3PdQA3dubq6upK5uTlZWlqS3t5eN3TDuyIdQXx7e5P5+XkZGxuTyspK6enpkZycHImLi5Pr62u3S6b31Xt2d3dLfHw8PUYAAQQQQMAXAgQwX7SRRSCAAAKhBb6zA+aFJr1T8DHBf9nqZ9ra2qS8vPzDrlmkAHZxcSEdHR2SlpYm4+Pj77tn3nc9Pj5Kf3+/nJycyPT0tOjRRS4EEEAAAQT8IEAA80MXWQMCCCAQRuCnAtjr66scHh6657X29/fl9vZWzs7O3PNgeunuWPC4+UgBbHt72wW3wcFBaWlpCVm9BjPdYVteXpaioiJ6jAACCCCAgC8ECGC+aCOLQAABBEILfCeAhTuCeHp6KgMDAy58hbu+G8D+9ZzY5+9YWVmR4uJiWowAAggggIAvBAhgvmgj/jxDeAAAA79JREFUi0AAAQT+P4B5Qziam5vd8b/ExES306XPd+3s7Eh1dbU0NTVJXl6e+1lKSorbBQv1wuVIO2AEMP5iEUAAAQSiVYAAFq2dZ90IIBAVAl/dAfPG0O/t7cnMzIwbjKGX/l+PCOpYej1imJyc/MEtXNCKFMA2Nzelq6tLRkZGpLGxMSp6wSIRQAABBBBQAQIYfwcIIICAjwW+EsDu7+9leHjYTTqsr6//ELQifd4bwlFSUhLyGTB9V5i+5Fl3y4Kv8/NzaW9vd+8D0xCWmprq4y6wNAQQQAABBP4IEMD4a0AAAQR8LBAuQL28vMjNzY3oTtTi4qJcXl66EfMTExPvL0lWluPjYzcsQwPU0NCQFBYWupHwOnxja2vLTSjUSYWfnwG7u7uTzs5O9+Lm0dFRd3wxeJS8DvWYnZ11ExBLS0vdblhBQYEbca8j6h8eHkSfSVtfX3ffn5mZ6eMusTQEEEAAgWgSIIBFU7dZKwIIRJ1ApJcoeyC1tbXS19cnGRkZH4w0KGnImpyc/MsuISHBHVU8ODhw/wZPQQx+z1fwB3WcvDfiPtKLmPVzwb8fdc1jwQgggAACvhQggPmyrSwKAQQQ+C0QLoAlJSVJfn6+lJWVSV1dnWRnZ0tsbGxINt0t29jYcM+G6ZHDQCAgNTU1osM6YmJiQg7h0Bs9Pz/L6uqq6HAP/Zx+Z0VFhRs97wU9faGzPme2trbmdtT0WTQNdnp0saqqyn1PVlZW2NroMwIIIIAAAtYECGDWOka9CCCAAAIIIIAAAgggYFaAAGa2dRSOAAIIIIAAAggggAAC1gQIYNY6Rr0IIIAAAggggAACCCBgVoAAZrZ1FI4AAggggAACCCCAAALWBAhg1jpGvQgggAACCCCAAAIIIGBWgABmtnUUjgACCCCAAAIIIIAAAtYECGDWOka9CCCAAAIIIIAAAgggYFaAAGa2dRSOAAIIIIAAAggggAAC1gQIYNY6Rr0IIIAAAggggAACCCBgVoAAZrZ1FI4AAggggAACCCCAAALWBAhg1jpGvQgggAACCCCAAAIIIGBWgABmtnUUjgACCCCAAAIIIIAAAtYECGDWOka9CCCAAAIIIIAAAgggYFaAAGa2dRSOAAIIIIAAAggggAAC1gQIYNY6Rr0IIIAAAggggAACCCBgVoAAZrZ1FI4AAggggAACCCCAAALWBAhg1jpGvQgggAACCCCAAAIIIGBWgABmtnUUjgACCCCAAAIIIIAAAtYECGDWOka9CCCAAAIIIIAAAgggYFbgF2ISVR7TR5EDAAAAAElFTkSuQmCC", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot the forecasts\n", "plot_func(forecasts, \"Simple Exponential Smoothing\")" ] }, { "cell_type": "code", "execution_count": null, "id": "50decf3a-3aec-4c33-a4ca-55828babb4a9", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.1" } }, "nbformat": 4, "nbformat_minor": 5 }