{ "cells": [ { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "from scipy import stats" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | year | \n", "date | \n", "newcastle | \n", "HBA | \n", "ICI_1 | \n", "
---|---|---|---|---|---|
0 | \n", "2023 | \n", "Dec-23 | \n", "146.25 | \n", "117.38 | \n", "118.48 | \n", "
1 | \n", "2023 | \n", "Nov-23 | \n", "132.15 | \n", "139.80 | \n", "118.75 | \n", "
2 | \n", "2023 | \n", "Oct-23 | \n", "121.10 | \n", "123.96 | \n", "121.70 | \n", "
3 | \n", "2023 | \n", "Sep-23 | \n", "160.01 | \n", "133.13 | \n", "116.50 | \n", "
4 | \n", "2023 | \n", "Aug-23 | \n", "156.00 | \n", "179.90 | \n", "114.57 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
140 | \n", "2012 | \n", "Apr-12 | \n", "100.75 | \n", "105.61 | \n", "106.26 | \n", "
141 | \n", "2012 | \n", "Mar-12 | \n", "107.00 | \n", "112.87 | \n", "111.01 | \n", "
142 | \n", "2012 | \n", "Feb-12 | \n", "112.10 | \n", "111.58 | \n", "116.55 | \n", "
143 | \n", "2012 | \n", "Jan-12 | \n", "117.45 | \n", "109.29 | \n", "115.64 | \n", "
144 | \n", "2011 | \n", "Dec-11 | \n", "112.25 | \n", "112.67 | \n", "113.00 | \n", "
145 rows × 5 columns
\n", "