{ "cells": [ { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "from scipy import stats" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
yeardatenewcastleHBAICI_1
02023Dec-23146.25117.38118.48
12023Nov-23132.15139.80118.75
22023Oct-23121.10123.96121.70
32023Sep-23160.01133.13116.50
42023Aug-23156.00179.90114.57
..................
1402012Apr-12100.75105.61106.26
1412012Mar-12107.00112.87111.01
1422012Feb-12112.10111.58116.55
1432012Jan-12117.45109.29115.64
1442011Dec-11112.25112.67113.00
\n", "

145 rows × 5 columns

\n", "
" ], "text/plain": [ " year date newcastle HBA ICI_1\n", "0 2023 Dec-23 146.25 117.38 118.48\n", "1 2023 Nov-23 132.15 139.80 118.75\n", "2 2023 Oct-23 121.10 123.96 121.70\n", "3 2023 Sep-23 160.01 133.13 116.50\n", "4 2023 Aug-23 156.00 179.90 114.57\n", ".. ... ... ... ... ...\n", "140 2012 Apr-12 100.75 105.61 106.26\n", "141 2012 Mar-12 107.00 112.87 111.01\n", "142 2012 Feb-12 112.10 111.58 116.55\n", "143 2012 Jan-12 117.45 109.29 115.64\n", "144 2011 Dec-11 112.25 112.67 113.00\n", "\n", "[145 rows x 5 columns]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = pd.read_csv('../coal-price-data/coal_price_data.csv')\n", "df" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "y = df.ICI_1\n", "x = df.newcastle" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "slope, intercept, r, p, std_err = stats.linregress(x, y)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "def myfunc(x):\n", " return slope * x + intercept\n", "\n", "mymodel = list(map(myfunc, x))" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGdCAYAAADjWSL8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABB+UlEQVR4nO3de3hU5b33/8/kyDETAySTFMSACsSAblBh6qEqpwBSrfT3KIJiS2GbglfV1ipUxagtVru3u7aKrVppH0Rb91O1IMYiCBQNhIMUAooQY8GSIUqaSTgkkGT9/khnyCSTZGYypzXzfl1XrouZWZm5bwddH9f63t/bYhiGIQAAAJNJiPQAAAAAAkGIAQAApkSIAQAApkSIAQAApkSIAQAApkSIAQAApkSIAQAApkSIAQAAppQU6QEEorm5WUeOHFHfvn1lsVgiPRwAAOADwzBUV1ennJwcJSR0/zqKKUPMkSNHNGjQoEgPAwAABODw4cMaOHBgt9/HlCGmb9++klr+IaSlpUV4NAAAwBe1tbUaNGiQ+zzeXaYMMa5bSGlpaYQYAABMJlilIBT2AgAAU/IrxCxbtkyjRo1yXwGx2+1655133K/X19drwYIF6tevn/r06aMZM2bo6NGjHu9x6NAhTZs2Tb169VJmZqbuu+8+NTY2Bmc2AAAgbvgVYgYOHKgnnnhCO3bs0Pbt23Xdddfphhtu0N69eyVJ99xzj1atWqXXX39dGzdu1JEjR3TTTTe5f7+pqUnTpk3T6dOn9eGHH+r3v/+9li9frocffji4swIAADHPYhiG0Z03yMjI0FNPPaVvf/vbGjBggFauXKlvf/vbkqRPPvlEI0aMUElJicaNG6d33nlH119/vY4cOaKsrCxJ0vPPP6/7779fX375pVJSUnz6zNraWlmtVjmdTmpiAAAwiWCfvwOuiWlqatJrr72mEydOyG63a8eOHTpz5owmTJjgPmb48OE699xzVVJSIkkqKSnRyJEj3QFGkiZPnqza2lr31RxvGhoaVFtb6/EDAADim98hZs+ePerTp49SU1N155136o033lBeXp4cDodSUlKUnp7ucXxWVpYcDockyeFweAQY1+uu1zqydOlSWa1W9w89YgAAgN8hZtiwYdq1a5e2bt2qwsJCzZkzR/v27QvF2NwWLVokp9Pp/jl8+HBIPw8AAEQ/v/vEpKSk6Pzzz5ckjRkzRtu2bdMvf/lL3XzzzTp9+rRqamo8rsYcPXpUNptNkmSz2VRaWurxfq7VS65jvElNTVVqaqq/QwUAADGs231impub1dDQoDFjxig5OVnr1q1zv7Z//34dOnRIdrtdkmS327Vnzx5VVVW5j1m7dq3S0tKUl5fX3aEAAIA44teVmEWLFmnKlCk699xzVVdXp5UrV2rDhg169913ZbVaNXfuXN17773KyMhQWlqa7rrrLtntdo0bN06SNGnSJOXl5em2227Tk08+KYfDoQcffFALFizgSgsAAPCLXyGmqqpKt99+uyorK2W1WjVq1Ci9++67mjhxoiTp6aefVkJCgmbMmKGGhgZNnjxZzz33nPv3ExMTtXr1ahUWFsput6t3796aM2eOHn300eDOCgAAxLxu94mJBPrEAABgPlHTJwYAAMSe0opqjXzkXf39cE2kh9IlQgwAAJAkzf/Ddv2f35Sorr5RM5Z9GOnhdMnvJdYAACC2HK2t19ifrfN47i8Lr4zQaHxHiAEAII79bnOFHl3t2bT2k8cK1CM5MUIj8h0hBgCAOHS6sVn5S97V6aZm93P3FwxX4TVDIzgq/xBiAACIM1s/O6abf7vF47nN91+rgef0itCIAkOIAQAgjsz/w3b9dd9R9+OrLxyg33/nMlkslgiOKjCEGAAA4oDDWa9xSz2Ld1/53lhdcX7/CI2o+wgxAADEuJc2V+gxkxbvdoYQAwBAjIqF4t3OEGIAAIhBsVK82xlCDAAAMWbeH7ZrbYwU73aGEAMAQIyIxeLdzhBiAACIAbFavNsZQgwAACYW68W7nSHEAABgUvFQvNsZQgwAACbUtnj3GxcO0O+/e3kERxR+hBgAAEwk3op3O0OIAQDAJOKxeLczhBgAAKKct+LdB6YM153f8L94t6nZUGlFtarq6pXZt4cuz81QYoI5+8cQYgAAiGJbPjumW9oU737wwHX6WnpPv9+ruKxSRav2qdJZ734u29pDS6bnqSA/u9tjDbeESA8AAAB4973fb/cIMN+4cIA+f2JawAGmcMVOjwAjtdTYFK7YqeKyym6PN9y4EgMAQJQJdvFuU7OholX7ZHh5zZBkkVS0ap8m5tlMdWuJEAMAgB9CXVPy4t8+0+Nvf+zxXHeLd0srqttdgWnNkFTprFdpRbXsQ/sF/DnhRogBAMBHoawpCWbxbltVdR0HmECOixbUxAAA4INQ1pRs+eyYLnzwHY8A88ED1wUlwEhSZt8eQT0uWhBiAADoQlc1JVJLTUlTs7cjOhfM4t2OXJ6boWxrD3V008uilitKl+dmBO0zw4EQAwBAF/ypKfGVw1mv8x54W+99fHbrgFe+NzYkWwckJli0ZHqeJLULMq7HS6bnmaqoVyLEAADQpWDXlLz4t8/arT765LGCkG4dUJCfrWWzR8tm9bxlZLP20LLZo03ZJ4bCXgAAuhCsmpKGxiZd9PC7amx122nRlOH6zyDVvnSlID9bE/NsdOwFADOIpRbriBxXTYnDWe+1LsailisandWUBLPzbnckJlhMtYy6M4QYADEr1lqsI3JcNSWFK3bKInkEGV9qSr73+2167+Mq9+NvXDggJLUv8YaaGAAxKRZbrCOyAqkpqXSe+nfx7tkAE6ri3XjElRgAMSdWW6wj8vypKQlF5114IsQAiDmx2mId0aGrmpJIF+/GE0IMgJgTqy3WEf2ipXg3XhBiAMScWG2xjuhG8W74EWIAxJxgLIcFfFXpPCX70vUez6383lh9PYSN69CC1UkAYk6stlhH9Hnxb5+1CzCfPFbQ7QDT1GyopPyY3tr1T5WUHwtoT6Z4wJUYADHJtRy2bZ8YG31iEAShLN6lv5HvLIZhmC7e1dbWymq1yul0Ki0tLdLDARDF6NiLYPNWvPvhA9cpJwjFu67+Rm1PzK6/sWbd48gl2OdvrsQAiGmx1GIdkTd3+Tat+yQ0xbv0N/IfIQYAgC6Eo3iX/kb+I8QAANCJcHXepb+R/wgxAAB40dDYpLyH3/VYGRTKzrvR0t/ITHVkhBgAANoIZfFuR6Khv5HZVkbRJwYAgFbmLt/mEWCuGTZAnz8xLaQBRop8fyMz7vxOiAEARL1wNH+rdJ7SeQ+87bH6aOX3xmr5d8K3dYCrv5HN6nnLyGbtEdLl1V2tjJJaVkZFW9M9bicBALyKltqIcNziaFu8a7FIHz8a/OJdXxTkZ2tini2s/+zNujKKEAMAaCdaaiM6av7musXR3asT3op3F08drvlXh6Z411fh7m9k1pVR3E4CAHiIltqIUN/iKCk/pmEPFnv8/ocPXBfxABMJ0bIyyl+EGACAWzTVRvhzi8Nfc5dv08wXwl+8G61cK6M6umFlUcuVuGjb+Z0QAwBwC2Vw8FcobnFEQ/FuNIr0yqhAEWIAAG7RVBsR7FscL2z6zGPrAIulpfNuMLcOMLNIrYzqDgp7AQBu0VQbEazmbw2NTRrxULFa3wGLhuLdaBSJlVHdQYgBALhFQ9dYF9ctjsIVO2WRPMbj6y2OkvJjHrUvUug775qdmXZ+53YSAMAt2mojunOLg+Lds8LRLDASLIZhmG4mtbW1slqtcjqdSktLi/RwACDmREufGBd/Gu9VOk951L5ILcW78Vr7Ek3fZbDP34QYAIBX0dKx1x8vbPpMP11ztvNugkX6+LECpSaFv/NuNOioWaDrWwx3wW6wz99+3U5aunSpLrvsMvXt21eZmZm68cYbtX//fo9jrrnmGlksFo+fO++80+OYQ4cOadq0aerVq5cyMzN13333qbGxsduTAQAEj6s24oZLvib70H5RHWAaGps0ZNHbHgFm8dTh+mzptLgNMNHU8ydU/Crs3bhxoxYsWKDLLrtMjY2NWrx4sSZNmqR9+/apd+/e7uPmzZunRx991P24V69e7j83NTVp2rRpstls+vDDD1VZWanbb79dycnJ+tnPfhaEKQEA4gnFu96ZdT8kf/gVYoqLiz0eL1++XJmZmdqxY4euvvpq9/O9evWSzWbz+h5//etftW/fPr333nvKysrSJZdcoscee0z333+/HnnkEaWkpAQwDQBAPJq7fJtH47prhw3Qy3HeuM4lmnr+hEq3Vic5nU5JUkaG51K7V155Rf3791d+fr4WLVqkkydPul8rKSnRyJEjlZWV5X5u8uTJqq2t1d69e71+TkNDg2praz1+AADx60iNl86788YSYFqJpp4/oRJwn5jm5mbdfffduuKKK5Sfn+9+/tZbb9XgwYOVk5Oj3bt36/7779f+/fv15z//WZLkcDg8Aowk92OHw+H1s5YuXaqioqJAhwoAiCEU7/ommnr+hErAIWbBggUqKyvT5s2bPZ6fP3+++88jR45Udna2xo8fr/Lycg0dGlh3xEWLFunee+91P66trdWgQYMCGzgAwJTM3nk33Ku9gtEsMNoFFGIWLlyo1atXa9OmTRo4cGCnx44dO1aSdPDgQQ0dOlQ2m02lpaUexxw9elSSOqyjSU1NVWpqaiBDBQDEALMX70aqV4urWWDbz7ZFsOdPMPkVYgzD0F133aU33nhDGzZsUG5ubpe/s2vXLklSdnbLPyi73a6f/vSnqqqqUmZmpiRp7dq1SktLU15enp/DBwDEuu8u36b1rWpfrhueqd/dcVkER+Sfjnq1OJz1KlyxM+S9Wsy2H5I//Gp29/3vf18rV67UW2+9pWHDhrmft1qt6tmzp8rLy7Vy5UpNnTpV/fr10+7du3XPPfdo4MCB2rhxo6SWJdaXXHKJcnJy9OSTT8rhcOi2227T9773PZ+XWNPsDgBi35GaU/r6E206784bq68PNU/n3aZmQ1f+fH2HS51ddSmb778uJkJFVyLa7G7ZsmVyOp265pprlJ2d7f754x//KElKSUnRe++9p0mTJmn48OH64Q9/qBkzZmjVqlXu90hMTNTq1auVmJgou92u2bNn6/bbb/foKwMAiG8vbPrMI8AkWKT9jxeYKsBI/vVqgf/8vp3UmUGDBrmvuHRm8ODBWrNmjT8fDQCIAw2NTRr+ULFan25+MnWE5l09JHKD6oZ46NUSSQGvTgIAIJg+LP9Kt76w1fM5ExXvehMPvVoiiRADAIi477xcqvf3f+l+bLbi3Y7EQ6+WSOpWx14AALrD1Xm3dYBZOW9sTAQY6WyvFulsbxaXWOnVEkmEGABARMRK8W5XXL1abFbPW0Y2a4+QL6+OddxOAgCEVUNjk4Y96LmhsJmLd30Ry71aIokQAwAIm1gs3vVVYoJF9qH9vL4W7i0JYgUhBgAQFrFavNtdkdqSIBYQYgAAIeWt8+6r88Z1eFUinkR6SwKzo7AXABAyv91U7rV4lwDTcgupaNU+r0uvXc8VrdqnpmafdweKO1yJAQAEXTwW7/rLny0JCH3eEWIAAEHlrXi3ZNF1yrbGfvGuP9iSoPsIMQCAoKF413dsSdB9hBgAQLdRvOs/tiToPgp7AQDd0rZ4NynBQvGuD9iSoPu4EgMACEj9mSYNf8izePfBaSP0vaso3vWVa0uCtn1ibPSJ8QkhBgDgN4p3g4ctCQJHiAEA+OWOl0u1oVXx7vjhmXqJ4t1u6WxLAnSMEAMA8AnFu4g2hBgAQJd+s7FcS9/5xP04KcGivY9OVmpSYgRHhXhHiAEAdIjiXUQzQgwA02pqNiiGDKEPD36lW1+keBfRixADwJSKyyrbLUvNZllq0LQt3p0wIlMvzqF4F9GFEAPAdIrLKlW4Yme7LqcOZ70KV+zUstmjCTIBongXZkLHXgCm0tRsqGjVPq9t2l3PFa3ap6Zmb0egM7/ZSOddmAtXYgCYSmlFtcctpLYMSZXOepVWVHPy9RHFuzArQgwAU6mq6zjABHJcvKN4F2ZGiAFgKpl9ewT1uHg253el2vgpxbswL0IMAFO5PDdD2dYecjjrvdbFWNSyed7luRnhHppp/LPmlK5oU7z72vxxGjeE228wFwp7AZhKYoJFS6bnSWoJLK25Hi+Znke/mA78ZmO5R4BxFe8SYGBGXIkBYDoF+dlaNnt0uz4xNvrEdIjiXcQiQgwAUyrIz9bEPBsde31A8S5iFSEGgGklJlhYRt0FincRywgxABCDKN5FPCDEAECMeX5juZ545xP34+REi8qKJis1KTGCowKCjxADADGC4l3EG0IMAMQAincRjwgxAGByt/+uVJso3kUcIsQAgElRvIt4R4gBABOieBcgxACAqVC8C5xFiAEAk/BWvLtl0XjZrOzYjfhEiAEAE2hfvJulF+dcGsERAZFHiAGAKOatePeP88dpLMW7ACEGAKJV2+LdlMQE7SmaRPEu8G+EGACIMhTvAr4hxABAFPng4FeaRfEu4BNCDABEAcMwdPvvSvW3A1+5n6N4F+gcIQYAIoziXSAwhBgAiCCKd4HAEWIABKSp2VBpRbWq6uqV2beHLs/NUGKCJdLDMg1vxbsPXZ+nuVfmRmhEgPkQYgD4rbisUkWr9qnSWe9+LtvaQ0um56kgPzuCIzMHineB4EiI9AAAmEtxWaUKV+z0CDCS5HDWq3DFThWXVUZoZNHPMAzd9tJWjwAzMS9Lnz8xjQADBIArMQB81tRsqGjVPhleXjMkWSQVrdqniXk2bi21QfEuEHxciQHgs9KK6nZXYFozJFU661VaUR2+QZnAsg3lHgEmJSlBnz4+hQADdBNXYgD4rKqu4wATyHGxjuJdILQIMQB8ltnXt7oNX4+LZRTvAqFHiAHgs8tzM5Rt7SGHs95rXYxFks3astw6XnnrvDsxL0sv3E7nXSDYqIkB4LPEBIuWTM+T1BJYWnM9XjI9L26Ler/410nlLlrjEWD+OH8cAQYIEb9CzNKlS3XZZZepb9++yszM1I033qj9+/d7HFNfX68FCxaoX79+6tOnj2bMmKGjR496HHPo0CFNmzZNvXr1UmZmpu677z41NjZ2fzYAQq4gP1vLZo9ud1vEZu2hZbNHx22fmGUbynXlz993P6Z4Fwg9v24nbdy4UQsWLNBll12mxsZGLV68WJMmTdK+ffvUu3dvSdI999yjt99+W6+//rqsVqsWLlyom266SR988IEkqampSdOmTZPNZtOHH36oyspK3X777UpOTtbPfvaz4M8QQNAV5GdrYp6Njr2ieBeIJIthGN5ubfvkyy+/VGZmpjZu3Kirr75aTqdTAwYM0MqVK/Xtb39bkvTJJ59oxIgRKikp0bhx4/TOO+/o+uuv15EjR5SVlSVJev7553X//ffryy+/VEpKSpefW1tbK6vVKqfTqbS0tECHDwDdsvnAV5r9EsW7gK+Cff7uVk2M0+mUJGVktBTx7dixQ2fOnNGECRPcxwwfPlznnnuuSkpKJEklJSUaOXKkO8BI0uTJk1VbW6u9e/d2ZzgAEBauzrutAwydd4HwC3h1UnNzs+6++25dccUVys/PlyQ5HA6lpKQoPT3d49isrCw5HA73Ma0DjOt112veNDQ0qKGhwf24trY20GEDpsWGi9Hhi3+d9Kh9kei8C0RKwCFmwYIFKisr0+bNm4M5Hq+WLl2qoqKikH8OEK3YcDE6LNtQrp8Xf+J+nJqUoD2PTFZKEgs9gUgI6N+8hQsXavXq1Xr//fc1cOBA9/M2m02nT59WTU2Nx/FHjx6VzWZzH9N2tZLrseuYthYtWiSn0+n+OXz4cCDDBkyJDRcjr/5Mk8574G2PAPPw9Xna//gUAgwQQX7922cYhhYuXKg33nhD69evV26uZ/X9mDFjlJycrHXr1rmf279/vw4dOiS73S5Jstvt2rNnj6qqqtzHrF27VmlpacrLy/P6uampqUpLS/P4AeJBVxsuSi0bLjY1B1yfjy5sPvBVu9VHWxaN13dZfQREnF+3kxYsWKCVK1fqrbfeUt++fd01LFarVT179pTVatXcuXN17733KiMjQ2lpabrrrrtkt9s1btw4SdKkSZOUl5en2267TU8++aQcDocefPBBLViwQKmpqcGfIWBi/my4aB9KTUYweeu8OykvS7+lcR0QNfwKMcuWLZMkXXPNNR7Pv/zyy7rjjjskSU8//bQSEhI0Y8YMNTQ0aPLkyXruuefcxyYmJmr16tUqLCyU3W5X7969NWfOHD366KPdmwkQg9hwMTK8Fe/+6T/tcb2dAhCNutUnJlLoE4N4UVJ+TDNf2NLlca/OG8eVmCB5bsNBPVl8thM5xbtA8AT7/M0GkEAUY8PF8PHWeffh6/OofQGiGP9rAUQxNlwMD4p3AXMixABRjg0XQ8cwDM1+0bPz7iQ67wKmwe0kwATYcDH4KN4FzI8QA5hEYoKF4t0goXgXiA2EGABxw1vx7pLpefrOFdS+AGZEiAEQFzYf+Mqj9kWSti4er6w0al8AsyLEAIhphmHotpdKtfng2c67ky/K0m9uo/MuYHaEGAAxi+JdILYRYgDEpGffP6in3qV4F4hlhBgAMYXiXSB+EGKAEGtqNujvEiZ/O/Clbnup1OM5ineB2EWIAUKouKxSRav2qdJ5dpfpbGsPLZmeR6fdIDIMQ7Nf2qoPDh5zP0fxLhD7CDFAiBSXVapwxc52Gzc6nPUqXLGTLQOChOJdIH5R4QaEQFOzoaJV+7zuPO16rmjVPjU1ezsCvnr2/YMeASY1KUGfPj6FAAPECa7EACFQWlHtcQupLUNSpbNepRXVbCUQAIp3AUiEGCAkquo6DjCBHIezKN4F4EKIAUIgs69vJ1RfjwPFuwDaI8QAIXB5boayrT3kcNZ7rYuxSLJZe1C74SOKdwF4Q2EvEAKJCRYtmZ4nqSWwtOZ6vGR6Hv1ifNC2eLdHMsW7AFpwJQYIkYL8bC2bPbpdnxgbfWJ8QvEugK4QYoAQKsjP1sQ8Gx17/UTxLgBfEGKAEEtMsLCM2keGYWjWi1v1YTnFuwC6RogBEBUOV5/UVU9SvAvAd4QYABH37PsH9dS7+92PeyQnaPeSyUpJYu0BgI4RYgBEjJmKd9mNHIg+hBggisXyidNMxbvsRg5EJ0IMEKVi9cTprXi34CKbnr9tTARH1TF2IweiFzecgSjkOnG23UTSdeIsLquM0Mi653D1SeUuWuMRYF6/0x61AYbdyIHoRogBokysnjifff+gx+qjnsmJ+vTxKbrsvOhdfeTPbuQAwo/bSUCU8efEaYb+M96Kdx+Znqc7orB4ty12IweiGyEGiDKxdOL0Vrxbuni8MqOweNcbdiMHohshBogysXDiNFvxbkfYjRyIbtTEAFHGdeLsaCG1RS2rlKL1xGm24t3OsBs5EN0IMUCUMfOJ04zFu11x7UZus3pe+bJZe7C8Gogwi2EY5lriIKm2tlZWq1VOp1NpaWmRHg4QEmbqE2Pm4l1fxXLjQSBcgn3+JsQAUcwMJ85Nn36p239n3uJdAOET7PM3hb1AFEtMsETtMmpvxbtT8m1aNtt8tS8AzIkQA8Bvh6tPetS+SC3Fu2aufQFgPoQYAH559v2Deurd/e7HvVIStevhSUpJYp0AgPAixADwibfi3aJvXqQ5Xz8vMgMCEPcIMQC6RPEugGhEiAHQIW/Fu1NH2vTcLIp3AUQeIQaAV96Kd//3TrsupXgXQJQgxABo59frD+gXf/3U/ZjiXQDRiBADwI3iXQBmQogBIMm/4l0zdBIGEPsIMYhqnCxDzzAM3frCVpV85lvxrpn2dAIQ2wgxiFqhOFkSijz5W7xbXFapwhU71XbDNYezXoUrdrKrM4CwIsQgKoXiZMkVBE9ti3d7pyTqo06Kd5uaDRWt2tfuO5EkQ5JFUtGqfZqYZ4vrYAggfFhqgKjT1clSajlZNjX7vgG7KxS1DjDS2VBUXFYZ+IBNpv5Mk8574G2PAFP0zYu099GCTlcflVZUt/vn15ohqdJZr9KK6mAOFwA6RIhB1An2yTIUocisNn36ZbvVR6WLx/u0+qiqruPvJJDjAKC7uJ2EqBPsk6U/ocg+tJ9P72k2/hbvepPZ17ctBnw9DgC6ixCDqBPsk2W8X0EIVufdy3MzlG3tIYez3utVLYskm7WlWBoAwoHbSYg6rpNlR6WhFrUU5Pp6soznKwi/Xn/AI8D0TknUgZ9OCWjrgMQEi5ZMz5Okdt+N6/GS6XkU9QIIG0IMok6wT5bBDkVm0FnxbnJi4P/aF+Rna9ns0bJZPQOfzdqD5dUAws5iGIbpqhlra2tltVrldDqVlpYW6eEgRIK5JNq1OkmSx60QV7CJpRPwxk+/1BwfO+8Gin47AAIR7PM3IQZRLZgny1hvnmcYhma+sEVbPju7asvf4l0ACCVCjAgxCFy0h6JABat4FwBCKdjnb79vjm/atEnTp09XTk6OLBaL3nzzTY/X77jjDlksFo+fgoICj2Oqq6s1a9YspaWlKT09XXPnztXx48e7NRHAF4kJFtmH9tMNl3xN9qH9uhVgoqV53q/WBa94FwDMxO8Qc+LECV188cV69tlnOzymoKBAlZWV7p9XX33V4/VZs2Zp7969Wrt2rVavXq1NmzZp/vz5/o8eiIBoaZ7nKt79r7Vni3cfvaH7xbsAYBZ+94mZMmWKpkyZ0ukxqampstlsXl/7+OOPVVxcrG3btunSSy+VJP3qV7/S1KlT9Ytf/EI5OTn+DgkIq2honheO4l0AiHYh+d+1DRs2KDMzU8OGDVNhYaGOHTvbJbSkpETp6enuACNJEyZMUEJCgrZu3er1/RoaGlRbW+vxA0RKJJvnGYahW35b4hFgpo3M1udPTCPAAIg7Qe/YW1BQoJtuukm5ubkqLy/X4sWLNWXKFJWUlCgxMVEOh0OZmZmeg0hKUkZGhhwOh9f3XLp0qYqKioI9VCAgkWqe56149/8V2jVmcGhrX6JpBRYAtBb0EHPLLbe4/zxy5EiNGjVKQ4cO1YYNGzR+/PiA3nPRokW699573Y9ra2s1aNCgbo8VCEQk2u//at0Bj9qXPqlJ+ujhiSGvfYmmFVgA0FbIq/+GDBmi/v376+DBg5Ikm82mqqoqj2MaGxtVXV3dYR1Namqq0tLSPH6ASAln+/1Tp70X75YVTQ5LgImWFVgA4E3IQ8wXX3yhY8eOKTu75f/a7Ha7ampqtGPHDvcx69evV3Nzs8aOHRvq4QBBEY72+xs//VIjHi72eK508Xjdbj+v2+/dlWhZgQUAnfH7dtLx48fdV1UkqaKiQrt27VJGRoYyMjJUVFSkGTNmyGazqby8XD/+8Y91/vnna/LkyZKkESNGqKCgQPPmzdPzzz+vM2fOaOHChbrllltYmQRTKcjP1sQ8W9DrRVqKd7doa8XZzrvTRmXr2VtHd3fIPouGFVgA0BW/Q8z27dt17bXXuh+7alXmzJmjZcuWaffu3fr973+vmpoa5eTkaNKkSXrssceUmprq/p1XXnlFCxcu1Pjx45WQkKAZM2bomWeeCcJ0gPByNc8LlkgV77YVyRVYAOArv0PMNddco852Knj33Xe7fI+MjAytXLnS348GYtoz6w7ovyNQvOtNpFZgAYA/gr46CYB/Tp1ualf78ugNF4Wl9qUjkViBBQD+ojc5EEEb9le1L979SXiKdzsTzhVYABAoQgwQAYZh6ObflOiOl7e5n5s26t+dd6PkFk04VmABQHdwOwkIs2gp3vVFqFZgAUAwEGKAMGpbvNs3NUk7I1S866tgr8ACgGAhxABh4K1497EbLtJtEa59AQAzI8QAIbZhf5VH7YvUUrwbLbUvAGBWhBggRAzD0M2/3aLSCHbeBYBYRogBQuDQsZO6+ilzFO8CgFkRYoAgM2PxLgCYESEGCBKKdwEgvAgxQBBQvAsA4UeIAbqB4l0AiBxCDBAgincBILIIMUAAKN4FgMgjxAB+oHgXAKIHIQbwEcW7ABBdCDFAF7wV714/Klu/pngXACKKEIOIaWo2VFpRraq6emX27aHLczOUmGCJ9LA8eC/e/brGDD6n098zw9wAwOwIMYiI4rJKFa3ap0pnvfu5bGsPLZmep4L87AiO7KxfvndAT7/Xqni3R5J2PtR18a4Z5gYAscBiGIYR6UH4q7a2VlarVU6nU2lpaZEeDvxUXFapwhU71fYvnus6xbLZoyN6su9O8W60zw0AIinY52/WgyKsmpoNFa3a1+4kL8n9XNGqfWpqjky2fn9/VbsAU/qT8T4FmGifGwDEGkIMwqq0otrjNktbhqRKZ71HEW04GIah//N8ib7TavXR9aOy9fkT03xefRStcwOAWEVNDMKqqq7jk3wgxwVDoMW7bUXj3AAglhFiEFa+XtUIV++VQIt3vYm2uQFArCPEIKwuz81QtrWHHM56r7UjFkk2a8uS5FDyWrx7Y75uGzc44PeMlrkBQLygJgZhlZhg0ZLpeZLOrthxcT1eMj0vpD1VOize7UaAkaJjbgAQTwgxCLuC/Gwtmz1aNqvnbRWbtUdIlyAHo3i3K5GaGwDEI/rEIGS66lobzq62wSre9RUdewGgvWCfv6mJQUj40rU2McEi+9B+IR9LMIt3fRWuuQFAPCPEIOg66lrrcNarcMXOsN1WCUXxLgAgehBiEFRdda21qKVr7cQ8m1+3V/y9PbP8gwo9smqfx3OlPxnP8mYAiCGEGASVP11rvd1u8RZW1u5z+LyhomEYyl20xuO560dl69e3ju7exAAAUYcQg6DqTtdab3U06b2SVXPyTLtjvd2a2vOFU9N/vbndsTv+8S8Vl1WyMggAYgxLrBFUgXatddXRtL2K4y3ASO03VJz52y1eA4x0NvAUl1X6NDYAgDlwJQZ+66w+JZCutZ3V0XTGdWtq6OI1XR4nSQ/8vz3q2yNZ44b067SehuXRAGAOhBj4pbOl0xPzbCqtqNbUfJte+uDzdr/bUdfarupogqXm1BnNenFrh/U0km9LwwEA0YFmd/BZR0unLWq52tG2fiXBIjW3OrijMPDWrn/qB6/t6tbYEhMsamr27a+yKz61Xerd2fy8HQ8A8A/N7hARXS2dltrXr7ji8XevOE8T82wd3pbp7rLnX838D/Xvk6qZL2zx6fjWS72vG56lHf/4lxy19Xps9d6gLw0HAIQOIQY+CeSWj+vk/06ZQz+Z1vHGh13V0XTmVzMv0fSLc9TUbPj1Hq56mnFL31P1Ce/Fw96O72hpOAAg/FidBJ/4unS6rdYn/474svtzWz2TE/X87NGafvHXunyPzvgSYFoL9J8DACD4CDHwSXdv+XR18u9o9+e+PdpfLPyfmy9RWdHkdvUpHb1HMNHxFwCiB7eT4JPLczM6bDznC19O/gX52e4VTkdrT+nuP/5dtfWN7tdTEhP06U+n+PQeW8qPacHKnao5Fdh42/K2NBwAEFmEGHSodb+U/r1TA3oPf0/+iQkW9U5N1N1//LvH88/NGq2pI31bGZSYYNEVF/TXEzNGqnDFTknyu9amtY6WhgMAIosQA6+89UvxVyAn/5m/3aKSz455PLf/8QKlJiX6/fmu20tt59Gvd4qOnTjt8/vY6BMDAFGJEIN2OuqX4i9/Tv619Wc06pG/ejx386WD9PNvj+rWGFrfonJ14B0z+Bx946n3O+0qnNE7RQ9OGyGbtScdewEgShFi4CHQLQBcHpo2Qv37pvrVrv/lDypUtGqfx3Ob7rtW5/brFeAoPCUmWNoti14yPU+FK3a6G/W5uEb702/lc+UFAKIcIQYeAt0CwFX7cscVuT5ftTAMQ7mLPPc98qV4Nxg6utXErSMAMA9CDDwE0gclkNqX3V/U6Ju//sDjOX+Kd4PB260mbh0BgHkQYuJc2x2b+/fxfxWSv1cvbvltibZ85tn8LtDi3e7ydqsJAGAOhJg45m0Fki0tVem9kuU8eabDotestFT91/+5RF8db/Dr6kWoincBAPGJEBOnOlqBdLS2wf1cR0Wvj3zzIl1xfn+/Pu93myv06Gr/infbXiXiVg8AoDVCTBzqakdqiyRrr2T1SEqUo9b3oldvoSPBovbFu0kJ+vTxzot3vV0lyqboFgDQCiHG5AK5WtHVCiRDUs3JM/rJ1KHKy7H6dNvIW+jw1lTOl+Ldjq4SOZz1KlyxU8tmjybIAAAIMWYW6NUKX1cg/XTNJ+7366z4taPQ0TbA+FK868tVoqJV+zQxz8atJQCIc+xibVKu4ND2iorrakVxWWWHv+vPTsxdvZ8vzfF6Jieq/GdTfVp95MtVokpnvUorqjs8BgAQHwgxJtTV1Qqp5WpFU7P3aHF5boayrT3ky3WMzt6vqdnQ8g8qumyOd+pMk8+hw9erRIH0swEAxBZCjAl192pFYoJFS6bnSZLPQabt+xWXVerKn6/XY29/7NOYfQ0dvl4l8udqEgAgNhFiTCgYVytcbfdtVt/DgOv9OrqV1ZnPvzrh03FdXSWyqKXu5/LcDJ8/GwAQm/wOMZs2bdL06dOVk5Mji8WiN9980+N1wzD08MMPKzs7Wz179tSECRN04MABj2Oqq6s1a9YspaWlKT09XXPnztXx48e7NZF44utViANHj6uk/FiHt5UK8rO1+f7r9NC0ET5/bqAbRL5aeqjDcbTW2VWiQLY3AADELr9DzIkTJ3TxxRfr2Wef9fr6k08+qWeeeUbPP/+8tm7dqt69e2vy5Mmqrz/7f+2zZs3S3r17tXbtWq1evVqbNm3S/PnzA59FnPG1puXX7x/UzBe26Mqfr++wMDcxwaI7rshVeq/kTt8rvVeyLs/NCHiDSEdtg891MR1dJbJZe7C8GgDg5vcS6ylTpmjKFO+NygzD0P/8z//owQcf1A033CBJ+sMf/qCsrCy9+eabuuWWW/Txxx+ruLhY27Zt06WXXipJ+tWvfqWpU6fqF7/4hXJycroxnfjgulpRuGJnu6663rhWGN094UKd17+Xu+eL1FJf46it15mm5k7fwxWY3t9fFfC4/SnGZXNGAEBXgtonpqKiQg6HQxMmTHA/Z7VaNXbsWJWUlOiWW25RSUmJ0tPT3QFGkiZMmKCEhARt3bpV3/rWt9q9b0NDgxoaGtyPa2trgzlsU3JdrWjbJ8YbV8h5+r1P3c/1SE6QRdKpM52HF5d/nTyjqb/8m/YfrQtwxP4X47I5IwCgM0Et7HU4HJKkrKwsj+ezsrLcrzkcDmVmZnq8npSUpIyMDPcxbS1dulRWq9X9M2jQoGAO27RcNS2vzhunhdcO9et36880+xxgXAINMBTjAgBCwRSrkxYtWiSn0+n+OXz4cKSHFDVcVysuyOob6aF4RTEuACBUghpibDabJOno0aMezx89etT9ms1mU1WVZ11FY2Ojqqur3ce0lZqaqrS0NI8feIrWvikZvVP07K0U4wIAgi+oISY3N1c2m03r1q1zP1dbW6utW7fKbrdLkux2u2pqarRjxw73MevXr1dzc7PGjh0bzOHEFX+68IbTsROn9djb+zrdBgEAgED4HWKOHz+uXbt2adeuXZJainl37dqlQ4cOyWKx6O6779bjjz+uv/zlL9qzZ49uv/125eTk6MYbb5QkjRgxQgUFBZo3b55KS0v1wQcfaOHChbrllltYmdQNrhVL/vZvCQdf9nMCAMBffq9O2r59u6699lr343vvvVeSNGfOHC1fvlw//vGPdeLECc2fP181NTW68sorVVxcrB49zt7ueOWVV7Rw4UKNHz9eCQkJmjFjhp555pkgTCe+TcyzKb1nkmpONUZ6KB7YfRoAEAoWwzCi8X/eO1VbWyur1Sqn00l9TCu/fO+AxzLqaPTqvHEsmwaAOBXs87cpVieha8VllSELMF1dOEnvlazvXzPEp/di92kAQLAQYmKAaz+jUJiUl6Vfzxwti7zvZWSR9MRNI3XVBZntf9mLaF1FBQAwH0JMDNhSfiyg/Yx8MTY3Q1NHdb2XEbtPAwDCLajbDiD4mpoN9/5B/XunShbpq+MNyuzbQ2MGn6Pn3j+oZzccDMlnJ1ik2+znSep6L6PO9nOi4R0AIBQIMVGsuKzSp72RQmXeVblKSTp7sa6rvYw62s/JZu2hJdPzaHgHAAgqQkyUKi6rVOGKnRHp+2KRNP/qXC2amuf377L7NAAgXAgxUchVqBupte//9f9drJvGDAz499l9GgAQDhT2RqHSiuqI3UKSpOz0nhH7bAAAfMWVmCgUqV4qFrXUr7CCCABgBlyJiUKR6KXCCiIAgNkQYqJQJHakbt3zBQAAM+B2UhRq3XMl1NJ7JuvZWaM1bkg/rsAAAEyFKzFRytVzJatvakg/p+bUGSVYLAQYAIDpEGKiWEF+tm6+dFDIP4dNGQEAZkSIiWJNzYZe+qAi5J/DpowAADOiJibKtN4r6au6Bp043RSyz2JJNQDAzAgxEdY6tHz+1Um9WnpIjtrQ397xZ0l16zGyjQAAIFoQYiIo1Bs8ntMrSf862ej1NV83ZfQ2xmw2dAQARAFCTISEcoNH122ijfddqx3/+Jeq6urVv0+qZEhfnWjw+WpKR2N0OOtVuGInfWUAABFFiImAcGzwuGR6nlKSEgLeiLGzMRpqCUpFq/ZpYp6NW0sAgIhgdVIEhHKDx+wgdd7taoyGpEpnvUorqrv1OQAABIorMRHw172VIXnfh6aN0B1X5AblyoivvWPoMQMAiBRCTJit2X1Ey0v+EdT3dNXABCvASL73jqHHDAAgUridFCZNzYZ++d4BfX/lRzKCWAwTqt2nu9qE0qKWW1f0mAEARAohJgyKyyp1xRPr9PR7nwb9vUO1+7RrE0pJ7YJMqIITAAD+IMSEmGuZsqO2Iejv/dC0Edp8/3UhW+bs2oTSZvW8ZRSq4AQAgD+oiQmhUC+l7t83NeRXQgryszUxz0bHXgBA1CHEhFAol1JL4SuqTUywBNxvBgCAUOF2Ugh1Z/lxeq9kimoBAOgEV2JCwLVh4ooAllK79iWSpMIVO2WRPG5HUVQLAEALQkyQFZdVaslf9upoAIW890y4QAuvu8AdTpbNHt1u80VfN24EACDWEWKCqLisUneu2BnQ7949/gL9YMKFHs9RVAsAQMcIMUHS2NSsu179KKDfTe+VrLvGX+D1NYpqAQDwjsJePzU1GyopP6a3dv1TJeXH1NRs6POvTuj8n7yjM02BL6Zeu88RxFECABD7uBLjh+KyynY1Kn1SE3W8oalb71tz8owKV+ykgRwAAH7gSoyPXJ132/Z96W6AcTEkLfrzHjU1h6o1HgAAsYUQ44NQd951+dfJM/r1+gMh/hQAAGIDIcYHoe6829rLH3zO1RgAAHxAiPFBdzrv+qvm1BmVVlSH7fMAADArCns74eq8+38D6LzbHeEMTQAAmBUhpgPd6bzbXeHa2BEAADMjxHjRnc673WFRy7YCbOwIAEDXqIlpozudd7uDjR0BAPAPV2JaaWhs0rAHiyPy2WzsCACAfwgxrfzt06/C/pnpPZP17K2jNW5oP67AAADgB24ntXLF+f01xz44rJ9Zc+qMtv+jmgADAICfCDGt9ExJ1Njcfgp3nHj6vQMqLqsM86cCAGBuhJhW1uyu1PdX7gz59gLeFK3aR6deAAD8QIj5tzW7j2jhq8FdVt0nNUm2tFSfjq101tOpFwAAPxBi1NIX5vsrP1KwL4QkJUgPX5/n8/F06gUAwHdxH2JcO1SHQs2pRp3TO1X3TLjQp+Pp1AsAgO/iPsSEeofqqrp6Lbzu/E5vK1kkZdOpFwAAv8R9iAn1LZzMvj2UmGDRI9+8SBap3conOvUCABCYuA8xobqF0/bqSkF+tpbNHi2b1fPzbNYeWjZ7NJ16AQDwU9x37L08N0PZ1h4huaXU9upKQX62JubZVFpRraq6emX2bQk5XIEBAMB/cR9iEhMsWjI9T4UrgtcfJruTfZASEyyyD+0XpE8CACB+xf3tJOnsrZ5eKYndfq8+qYnaeN+13B4CACDECDH/VpCfrXsmXNDt9zne0KQd//hXEEYEAAA6E/QQ88gjj8hisXj8DB8+3P16fX29FixYoH79+qlPnz6aMWOGjh49GuxhBOTwv04F5X1oWgcAQOiF5ErMRRddpMrKSvfP5s2b3a/dc889WrVqlV5//XVt3LhRR44c0U033RSKYfhtcEavoLwPTesAAAi9kBT2JiUlyWaztXve6XTqpZde0sqVK3XddddJkl5++WWNGDFCW7Zs0bhx40IxHJ/dZj9PP13zccDbD1jUsmSapnUAAIReSK7EHDhwQDk5ORoyZIhmzZqlQ4cOSZJ27NihM2fOaMKECe5jhw8frnPPPVclJSWhGIpfUpISNO+q3E6PmZiXSdM6AACiQNBDzNixY7V8+XIVFxdr2bJlqqio0FVXXaW6ujo5HA6lpKQoPT3d43eysrLkcDg6fM+GhgbV1tZ6/ITKoql5+s+rc9U2hyRYpP+8Olcv3H4ZTesAAIgCQb+dNGXKFPefR40apbFjx2rw4MH605/+pJ49ewb0nkuXLlVRUVGwhtilRVPz9MNJw/V/Sz7XP6pPanBGL91mP08pSS2Zj6Z1AABEXsib3aWnp+vCCy/UwYMHNXHiRJ0+fVo1NTUeV2OOHj3qtYbGZdGiRbr33nvdj2trazVo0KBQDlspSQmae9WQDl+naR0AAJEV8j4xx48fV3l5ubKzszVmzBglJydr3bp17tf379+vQ4cOyW63d/geqampSktL8/gBAADxLehXYn70ox9p+vTpGjx4sI4cOaIlS5YoMTFRM2fOlNVq1dy5c3XvvfcqIyNDaWlpuuuuu2S32yO+MgkAAJhL0EPMF198oZkzZ+rYsWMaMGCArrzySm3ZskUDBgyQJD399NNKSEjQjBkz1NDQoMmTJ+u5554L9jAAAECMsxiGEax9D8OmtrZWVqtVTqeTW0sAAJhEsM/f7J0EAABMiRADAABMiRADAABMiRADAABMiRADAABMKeQde0PBtaAqlHsoAQCA4HKdt4O1MNqUIaaurk6SQr71AAAACL66ujpZrdZuv48p+8Q0NzfryJEj6tu3ryyW4G+66Nqb6fDhwzHfhyZe5hov85TiZ67xMk8pfuYaL/OU4neuffv2VV1dnXJycpSQ0P2KFlNeiUlISNDAgQND/jnxtE9TvMw1XuYpxc9c42WeUvzMNV7mKcXnXINxBcaFwl4AAGBKhBgAAGBKhBgvUlNTtWTJEqWmpkZ6KCEXL3ONl3lK8TPXeJmnFD9zjZd5Ssw1WExZ2AsAAMCVGAAAYEqEGAAAYEqEGAAAYEqEGAAAYEpxG2IeeeQRWSwWj5/hw4e7X6+vr9eCBQvUr18/9enTRzNmzNDRo0cjOGLfbdq0SdOnT1dOTo4sFovefPNNj9cNw9DDDz+s7Oxs9ezZUxMmTNCBAwc8jqmurtasWbOUlpam9PR0zZ07V8ePHw/jLHzT1VzvuOOOdt9zQUGBxzFmmOvSpUt12WWXqW/fvsrMzNSNN96o/fv3exzjy9/ZQ4cOadq0aerVq5cyMzN13333qbGxMZxT6ZQv87zmmmvafad33nmnxzHRPk9JWrZsmUaNGuVuAGa32/XOO++4X4+F71Pqep6x8n1688QTT8hisejuu+92Pxcr32tr3uYZtu/ViFNLliwxLrroIqOystL98+WXX7pfv/POO41BgwYZ69atM7Zv326MGzfO+PrXvx7BEftuzZo1xk9+8hPjz3/+syHJeOONNzxef+KJJwyr1Wq8+eabxt///nfjm9/8ppGbm2ucOnXKfUxBQYFx8cUXG1u2bDH+9re/Geeff74xc+bMMM+ka13Ndc6cOUZBQYHH91xdXe1xjBnmOnnyZOPll182ysrKjF27dhlTp041zj33XOP48ePuY7r6O9vY2Gjk5+cbEyZMMD766CNjzZo1Rv/+/Y1FixZFYkpe+TLPb3zjG8a8efM8vlOn0+l+3QzzNAzD+Mtf/mK8/fbbxqeffmrs37/fWLx4sZGcnGyUlZUZhhEb36dhdD3PWPk+2yotLTXOO+88Y9SoUcYPfvAD9/Ox8r26dDTPcH2vcR1iLr74Yq+v1dTUGMnJycbrr7/ufu7jjz82JBklJSVhGmFwtD2xNzc3GzabzXjqqafcz9XU1BipqanGq6++ahiGYezbt8+QZGzbts19zDvvvGNYLBbjn//8Z9jG7q+OQswNN9zQ4e+Yda5VVVWGJGPjxo2GYfj2d3bNmjVGQkKC4XA43McsW7bMSEtLMxoaGsI7AR+1nadhtPzHsfV/LNsy4zxdzjnnHOPFF1+M2e/TxTVPw4jN77Ours644IILjLVr13rML9a+147maRjh+17j9naSJB04cEA5OTkaMmSIZs2apUOHDkmSduzYoTNnzmjChAnuY4cPH65zzz1XJSUlkRpuUFRUVMjhcHjMzWq1auzYse65lZSUKD09XZdeeqn7mAkTJighIUFbt24N+5i7a8OGDcrMzNSwYcNUWFioY8eOuV8z61ydTqckKSMjQ5Jvf2dLSko0cuRIZWVluY+ZPHmyamtrtXfv3jCO3ndt5+nyyiuvqH///srPz9eiRYt08uRJ92tmnGdTU5Nee+01nThxQna7PWa/z7bzdIm173PBggWaNm2ax/cnxd6/px3N0yUc36spN4AMhrFjx2r58uUaNmyYKisrVVRUpKuuukplZWVyOBxKSUlRenq6x+9kZWXJ4XBEZsBB4hp/6784rseu1xwOhzIzMz1eT0pKUkZGhunmX1BQoJtuukm5ubkqLy/X4sWLNWXKFJWUlCgxMdGUc21ubtbdd9+tK664Qvn5+ZLk099Zh8Ph9Xt3vRZtvM1Tkm699VYNHjxYOTk52r17t+6//37t379ff/7znyWZa5579uyR3W5XfX29+vTpozfeeEN5eXnatWtXTH2fHc1Tiq3vU5Jee+017dy5U9u2bWv3Wiz9e9rZPKXwfa9xG2KmTJni/vOoUaM0duxYDR48WH/605/Us2fPCI4MwXTLLbe4/zxy5EiNGjVKQ4cO1YYNGzR+/PgIjixwCxYsUFlZmTZv3hzpoYRUR/OcP3+++88jR45Udna2xo8fr/Lycg0dOjTcw+yWYcOGadeuXXI6nfrf//1fzZkzRxs3boz0sIKuo3nm5eXF1Pd5+PBh/eAHP9DatWvVo0ePSA8nZHyZZ7i+17i+ndRaenq6LrzwQh08eFA2m02nT59WTU2NxzFHjx6VzWaLzACDxDX+ttXwredms9lUVVXl8XpjY6Oqq6tNP/8hQ4aof//+OnjwoCTzzXXhwoVavXq13n//fQ0cOND9vC9/Z202m9fv3fVaNOlont6MHTtWkjy+U7PMMyUlReeff77GjBmjpUuX6uKLL9Yvf/nLmPs+O5qnN2b+Pnfs2KGqqiqNHj1aSUlJSkpK0saNG/XMM88oKSlJWVlZMfG9djXPpqamdr8Tqu+VEPNvx48fV3l5ubKzszVmzBglJydr3bp17tf379+vQ4cOedzHNaPc3FzZbDaPudXW1mrr1q3uudntdtXU1GjHjh3uY9avX6/m5mb3X0Sz+uKLL3Ts2DFlZ2dLMs9cDcPQwoUL9cYbb2j9+vXKzc31eN2Xv7N2u1179uzxCG1r165VWlqa+9J+pHU1T2927dolSR7fabTPsyPNzc1qaGiIme+zI655emPm73P8+PHas2ePdu3a5f659NJLNWvWLPefY+F77WqeiYmJ7X4nZN+r//XIseGHP/yhsWHDBqOiosL44IMPjAkTJhj9+/c3qqqqDMNoWQZ37rnnGuvXrze2b99u2O12w263R3jUvqmrqzM++ugj46OPPjIkGf/93/9tfPTRR8Y//vEPwzBallinp6cbb731lrF7927jhhtu8LrE+j/+4z+MrVu3Gps3bzYuuOCCqFt2bBidz7Wurs740Y9+ZJSUlBgVFRXGe++9Z4wePdq44IILjPr6evd7mGGuhYWFhtVqNTZs2OCxZPHkyZPuY7r6O+ta0jhp0iRj165dRnFxsTFgwICoWrrZ1TwPHjxoPProo8b27duNiooK46233jKGDBliXH311e73MMM8DcMwHnjgAWPjxo1GRUWFsXv3buOBBx4wLBaL8de//tUwjNj4Pg2j83nG0vfZkbardGLle22r9TzD+b3GbYi5+eabjezsbCMlJcX42te+Ztx8883GwYMH3a+fOnXK+P73v2+cc845Rq9evYxvfetbRmVlZQRH7Lv333/fkNTuZ86cOYZhtCyzfuihh4ysrCwjNTXVGD9+vLF//36P9zh27Jgxc+ZMo0+fPkZaWprxne98x6irq4vAbDrX2VxPnjxpTJo0yRgwYICRnJxsDB482Jg3b57Hkj7DMMdcvc1RkvHyyy+7j/Hl7+znn39uTJkyxejZs6fRv39/44c//KFx5syZMM+mY13N89ChQ8bVV19tZGRkGKmpqcb5559v3HfffR79Jwwj+udpGIbx3e9+1xg8eLCRkpJiDBgwwBg/frw7wBhGbHyfhtH5PGPp++xI2xATK99rW63nGc7v1WIYhuH7dRsAAIDoQE0MAAAwJUIMAAAwJUIMAAAwJUIMAAAwJUIMAAAwJUIMAAAwJUIMAAAwJUIMAAAwJUIMAAAwJUIMAAAwJUIMAAAwJUIMAAAwpf8fNfzB2lr5nK8AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.scatter(x, y)\n", "plt.plot(x, mymodel)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" } }, "nbformat": 4, "nbformat_minor": 4 }