{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"from sklearn import preprocessing\n",
"import matplotlib.pyplot as plt\n",
"\n",
"plt.rc(\"font\", size=14)\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.model_selection import train_test_split\n",
"import seaborn as sns\n",
"\n",
"sns.set(style=\"white\")\n",
"sns.set(style=\"whitegrid\", color_codes=True)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(41188, 21)\n",
"['age', 'job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays', 'previous', 'poutcome', 'emp_var_rate', 'cons_price_idx', 'cons_conf_idx', 'euribor3m', 'nr_employed', 'y']\n"
]
}
],
"source": [
"data = pd.read_csv(\"../coal-price-data/banking.csv\", header=0)\n",
"data = data.dropna()\n",
"print(data.shape)\n",
"print(list(data.columns))"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" age | \n",
" job | \n",
" marital | \n",
" education | \n",
" default | \n",
" housing | \n",
" loan | \n",
" contact | \n",
" month | \n",
" day_of_week | \n",
" ... | \n",
" campaign | \n",
" pdays | \n",
" previous | \n",
" poutcome | \n",
" emp_var_rate | \n",
" cons_price_idx | \n",
" cons_conf_idx | \n",
" euribor3m | \n",
" nr_employed | \n",
" y | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 44 | \n",
" blue-collar | \n",
" married | \n",
" basic.4y | \n",
" unknown | \n",
" yes | \n",
" no | \n",
" cellular | \n",
" aug | \n",
" thu | \n",
" ... | \n",
" 1 | \n",
" 999 | \n",
" 0 | \n",
" nonexistent | \n",
" 1.4 | \n",
" 93.444 | \n",
" -36.1 | \n",
" 4.963 | \n",
" 5228.1 | \n",
" 0 | \n",
"
\n",
" \n",
" 1 | \n",
" 53 | \n",
" technician | \n",
" married | \n",
" unknown | \n",
" no | \n",
" no | \n",
" no | \n",
" cellular | \n",
" nov | \n",
" fri | \n",
" ... | \n",
" 1 | \n",
" 999 | \n",
" 0 | \n",
" nonexistent | \n",
" -0.1 | \n",
" 93.200 | \n",
" -42.0 | \n",
" 4.021 | \n",
" 5195.8 | \n",
" 0 | \n",
"
\n",
" \n",
" 2 | \n",
" 28 | \n",
" management | \n",
" single | \n",
" university.degree | \n",
" no | \n",
" yes | \n",
" no | \n",
" cellular | \n",
" jun | \n",
" thu | \n",
" ... | \n",
" 3 | \n",
" 6 | \n",
" 2 | \n",
" success | \n",
" -1.7 | \n",
" 94.055 | \n",
" -39.8 | \n",
" 0.729 | \n",
" 4991.6 | \n",
" 1 | \n",
"
\n",
" \n",
" 3 | \n",
" 39 | \n",
" services | \n",
" married | \n",
" high.school | \n",
" no | \n",
" no | \n",
" no | \n",
" cellular | \n",
" apr | \n",
" fri | \n",
" ... | \n",
" 2 | \n",
" 999 | \n",
" 0 | \n",
" nonexistent | \n",
" -1.8 | \n",
" 93.075 | \n",
" -47.1 | \n",
" 1.405 | \n",
" 5099.1 | \n",
" 0 | \n",
"
\n",
" \n",
" 4 | \n",
" 55 | \n",
" retired | \n",
" married | \n",
" basic.4y | \n",
" no | \n",
" yes | \n",
" no | \n",
" cellular | \n",
" aug | \n",
" fri | \n",
" ... | \n",
" 1 | \n",
" 3 | \n",
" 1 | \n",
" success | \n",
" -2.9 | \n",
" 92.201 | \n",
" -31.4 | \n",
" 0.869 | \n",
" 5076.2 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 21 columns
\n",
"
"
],
"text/plain": [
" age job marital education default housing loan \\\n",
"0 44 blue-collar married basic.4y unknown yes no \n",
"1 53 technician married unknown no no no \n",
"2 28 management single university.degree no yes no \n",
"3 39 services married high.school no no no \n",
"4 55 retired married basic.4y no yes no \n",
"\n",
" contact month day_of_week ... campaign pdays previous poutcome \\\n",
"0 cellular aug thu ... 1 999 0 nonexistent \n",
"1 cellular nov fri ... 1 999 0 nonexistent \n",
"2 cellular jun thu ... 3 6 2 success \n",
"3 cellular apr fri ... 2 999 0 nonexistent \n",
"4 cellular aug fri ... 1 3 1 success \n",
"\n",
" emp_var_rate cons_price_idx cons_conf_idx euribor3m nr_employed y \n",
"0 1.4 93.444 -36.1 4.963 5228.1 0 \n",
"1 -0.1 93.200 -42.0 4.021 5195.8 0 \n",
"2 -1.7 94.055 -39.8 0.729 4991.6 1 \n",
"3 -1.8 93.075 -47.1 1.405 5099.1 0 \n",
"4 -2.9 92.201 -31.4 0.869 5076.2 1 \n",
"\n",
"[5 rows x 21 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['basic.4y', 'unknown', 'university.degree', 'high.school',\n",
" 'basic.9y', 'professional.course', 'basic.6y', 'illiterate'],\n",
" dtype=object)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data[\"education\"].unique()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"data[\"education\"] = np.where(\n",
" data[\"education\"] == \"basic.9y\", \"Basic\", data[\"education\"]\n",
")\n",
"data[\"education\"] = np.where(\n",
" data[\"education\"] == \"basic.6y\", \"Basic\", data[\"education\"]\n",
")\n",
"data[\"education\"] = np.where(\n",
" data[\"education\"] == \"basic.4y\", \"Basic\", data[\"education\"]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['Basic', 'unknown', 'university.degree', 'high.school',\n",
" 'professional.course', 'illiterate'], dtype=object)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data[\"education\"].unique()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"y\n",
"0 36548\n",
"1 4640\n",
"Name: count, dtype: int64"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data[\"y\"].value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/fj/ycln97zn6b1ckstg6ksdmgl80000gp/T/ipykernel_62188/2225886973.py:1: FutureWarning: \n",
"\n",
"Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.\n",
"\n",
" sns.countplot(x=\"y\", data=data, palette=\"hls\")\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAG1CAYAAAA2g8rpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtNElEQVR4nO3df1DVdaL/8dchDr9CGyV+ZXolCFgmFdTjyL0Xly+31GnbuRG77ewubrj5o+LGRLX0Q9pKw0zxx1hjxiqpJddx0u3H1JaTszfXRg2sNm5AiqHSvR5OpknKgQNyvn94OctZbTnvI3QO9XzMMAOf9/vzPm93h+W5n8+Hg8XtdrsFAAAAn4UEegMAAADDDQEFAABgiIACAAAwREABAAAYIqAAAAAMEVAAAACGCCgAAABDBBQAAICh0EBv4Pvoo48+ktvtltVqDfRWAACAj7q7u2WxWJSVlTXgXAJqCLjdbvEG7wAADC8mP7sJqCHQd+VpwoQJAd4JAADwVX19vc9zeQYKAADAEAEFAABgiIACAAAwREABAAAYIqAAAAAMEVAAAACGCCgAAABDBBQAAIAhAgoAAMAQAQUAAGCIgAIAADBEQAEAABgioAAAAAwRUAAAAIYIKAAAAEME1DDm7u0N9BaAoMP3BYDvQmigNwD/WUJC9PmWanXaTwR6K0BQiEhI1HW/+W2gtwHgB4CAGuY67SfU8UVroLcBAMAPCrfwAAAADBFQAAAAhggoAAAAQwQUAACAIQIKAADAEAEFAABgiIACAAAwFPCA+uqrr/S73/1O06dPV1ZWlhYsWKAjR454xsvLy5WWlub1kZeX5xnv7e3V2rVrlZOTo8zMTM2fP1+trd7vi9TY2KjCwkJlZmYqLy9PW7Zs8Rr3ZQ0AAIA+AQ+o4uJiHTt2TFVVVXrllVcUERGhoqIiOZ1OSdJnn32mu+66S3v37vV8vPLKK57z161bp5qaGi1ZskTbtm1Tb2+v5s2bJ5fLJUk6ffq05s6dq3HjxmnHjh0qLi5WZWWlduzY4fMaAAAA/QU0oM6cOaMxY8boqaee0sSJE5WcnKx77rlHDodDhw8fltvtVnNzs2644QbFxsZ6PkaPHi1Jcrlcqq6uVklJiXJzc5Wenq7Vq1fLbrdr165dkqTt27fLarVq8eLFSk5OVkFBgYqKilRVVeXzGgAAAP0FNKCuuuoqrVy5UqmpqZKkU6dOadOmTUpISFBKSoqOHz+ujo4OXXfddZc8v6mpSefOnVN2drbn2MiRI5WRkaHa2lpJUl1dnaZNm6bQ0L/91Zrp06fr6NGjOnnypE9rAAAA9Bc0fwvvscce0/bt2xUWFqbnn39eUVFROnTokCTppZde0p49exQSEqIZM2aotLRUI0aMkN1ulyQlJiZ6rRUXF+cZs9vtnkDrPy5JJ06c8GkNf7jdbnV0dPh9/kAsFosiIyOHbH1gOHM6nXK73YHeBoBhxu12y2Kx+DQ3aALqjjvu0C9+8Qtt3bpVxcXFqqmp0aFDhxQSEqK4uDitX79ex48f1/Lly3X48GFt3rzZ85xUWFiY11rh4eE6c+aMJKmzs/OS45LU1dXl0xr+6O7uVmNjo9/nDyQyMlIZGRlDtj4wnLW0tHi+twHAxN/3wLcJmoBKSUmRJFVUVOivf/2rXn75ZVVUVOhXv/qVRo0aJUlKTU1VbGysbr/9dtXX1ysiIkLSheeY+j6XLoRR39WZiIiIix4G7+rqkiRFRUX5tIY/rFar5980FHwtZOCHKCkpiStQAIw1Nzf7PDegAXXq1Cnt27dPs2bN8jyjFBISopSUFDkcDoWEhHjiqc/1118v6cKtub7bbg6HQ+PGjfPMcTgcSktLkyQlJCTI4XB4rdH3dXx8vHp6egZcwx8Wi0VRUVF+nw/Af9zeBuAPk4sTAX2I/OTJk7r//vu1b98+z7Hu7m41NDQoOTlZZWVlKioq8jqnvr5e0oUrVunp6YqOjtaBAwc84+3t7WpoaJDNZpMk2Ww2HTx4UOfPn/fM2b9/v5KSkhQTE+PTGgAAAP0FNKBSU1M1Y8YMPfXUU6qtrdWhQ4f08MMPq729XUVFRZo1a5b27dun5557TsePH9d7772nRx99VLfccouSk5MVFhamwsJCVVZWavfu3WpqalJpaakSEhI0c+ZMSVJBQYHOnj2rRYsWqbm5WTt37tSmTZu0cOFCSfJpDQAAgP4C/gzUqlWrtHLlSpWWluqbb77R1KlTtXXrVl1zzTW65pprtGbNGlVVVekPf/iDRowYoZ/+9Ke67777POeXlJSop6dH5eXl6uzslM1m08aNG2W1WiVJMTEx2rBhgyoqKpSfn6/Y2FiVlZUpPz/f5zUAAAD6s7h50nLQ9d1mnDBhwpC/VsPyCnV8wZ+dASQp6tqxyihbFOhtABimTH5+B/xPuQAAAAw3BBQAAIAhAgoAAMAQAQUAAGCIgAIAADBEQAEAABgioAAAAAwRUAAAAIYIKAAAAEMEFAAAgCECCgAAwBABBQAAYIiAAgAAMERAAQAAGCKgAAAADBFQAAAAhggoAAAAQwQUAACAIQIKAADAEAEFAABgiIACAAAwREABAAAYIqAAAAAMEVAAAACGCCgAAABDBBQAAIAhAgoAAMAQAQUAAGCIgAIAADBEQAEAABgioAAAAAwRUAAAAIYIKAAAAEMEFAAAgCECCgAAwBABBQAAYCjgAfXVV1/pd7/7naZPn66srCwtWLBAR44c8Yw3NjaqsLBQmZmZysvL05YtW7zO7+3t1dq1a5WTk6PMzEzNnz9fra2tXnMGYw0AAIA+AQ+o4uJiHTt2TFVVVXrllVcUERGhoqIiOZ1OnT59WnPnztW4ceO0Y8cOFRcXq7KyUjt27PCcv27dOtXU1GjJkiXatm2bent7NW/ePLlcLkkalDUAAAD6C2hAnTlzRmPGjNFTTz2liRMnKjk5Wffcc48cDocOHz6s7du3y2q1avHixUpOTlZBQYGKiopUVVUlSXK5XKqurlZJSYlyc3OVnp6u1atXy263a9euXZI0KGsAAAD0F9CAuuqqq7Ry5UqlpqZKkk6dOqVNmzYpISFBKSkpqqur07Rp0xQaGuo5Z/r06Tp69KhOnjyppqYmnTt3TtnZ2Z7xkSNHKiMjQ7W1tZI0KGsAAAD0FzrwlO/GY489pu3btyssLEzPP/+8oqKiZLfbPXHVJy4uTpJ04sQJ2e12SVJiYuJFc/rGBmMNf7jdbnV0dPh9/kAsFosiIyOHbH1gOHM6nXK73YHeBoBhxu12y2Kx+DQ3aALqjjvu0C9+8Qtt3bpVxcXFqqmpUWdnp8LCwrzmhYeHS5K6urrkdDol6ZJzzpw5I0mDsoY/uru71djY6Pf5A4mMjFRGRsaQrQ8MZy0tLZ7vbQAw8fc98G2CJqBSUlIkSRUVFfrrX/+ql19+WRERERc9yN3V1SVJioqKUkREhKQLzzH1fd43p+/qzGCs4Q+r1er5Nw0FXwsZ+CFKSkriChQAY83NzT7PDWhAnTp1Svv27dOsWbM8zyiFhIQoJSVFDodDCQkJcjgcXuf0fR0fH6+enh7PsXHjxnnNSUtLk6RBWcMfFotFUVFRfp8PwH/c3gbgD5OLEwF9iPzkyZO6//77tW/fPs+x7u5uNTQ0KDk5WTabTQcPHtT58+c94/v371dSUpJiYmKUnp6u6OhoHThwwDPe3t6uhoYG2Ww2SRqUNQAAAPoLaEClpqZqxowZeuqpp1RbW6tDhw7p4YcfVnt7u4qKilRQUKCzZ89q0aJFam5u1s6dO7Vp0yYtXLhQ0oX7lIWFhaqsrNTu3bvV1NSk0tJSJSQkaObMmZI0KGsAAAD0F/BnoFatWqWVK1eqtLRU33zzjaZOnaqtW7fqmmuukSRt2LBBFRUVys/PV2xsrMrKypSfn+85v6SkRD09PSovL1dnZ6dsNps2btwoq9UqSYqJibnsNQAAAPqzuHnSctDV19dLkiZMmDDkr9WwvEIdX/BnZwBJirp2rDLKFgV6GwCGKZOf3wH/Uy4AAADDDQEFAABgiIACAAAwREABAAAYIqAAAAAMEVAAAACGCCgAAABDBBQAAIAhAgoAAMAQAQUAAGCIgAIAADBEQAEAABgioAAAAAwRUAAAAIYIKAAAAEMEFAAAgCECCgAAwBABBQAAYIiAAgAAMERAAQAAGCKgAAAADBFQAAAAhggoAAAAQwQUAACAIQIKAADAEAEFAABgiIACAAAwREABAAAYIqAAAAAMEVAAAACGCCgAAABDBBQAAIAhAgoAAMAQAQUAAGCIgAIAADBEQAEAABgKeEB9/fXX+v3vf68ZM2Zo8uTJ+uUvf6m6ujrP+Ny5c5WWlub1MWfOHM94V1eXnnzySWVnZysrK0sPPPCATp065fUa+/bt02233aZJkyZp9uzZevPNN73GfVkDAACgT8AD6v7779dHH32kVatWaceOHfrRj36kO++8U59//rkk6bPPPtMTTzyhvXv3ej6effZZz/l9Y88++6w2b96szz//XCUlJZ7xI0eOaOHChcrJydHOnTv185//XGVlZdq3b5/PawAAAPQXGsgXP3bsmN5//33V1NRoypQpkqTHHntMf/nLX/TGG2+osLBQX331lSZNmqTY2NiLzm9ra9Orr76q9evXa+rUqZKkVatWafbs2froo4+UlZWlzZs3Ky0tTaWlpZKk5ORkNTQ0aMOGDcrOzvZpDQAAgP4CegVq1KhRqqqq0oQJEzzHLBaLLBaL2tvb9dlnn8lisSgpKemS5x88eFCSNH36dM+xpKQkxcfHq7a2VpJUV1en7Oxsr/OmT5+ugwcPyu12+7QGAABAfwG9AjVy5Ej9+Mc/9jr2zjvv6NixY3r00Ud16NAhjRgxQosXL9b777+vqKgozZ49W/fcc4/CwsLU1tamUaNGKTw83GuNuLg42e12SZLdbldCQsJF406nU6dPn/ZpDX+43W51dHT4ff5ALBaLIiMjh2x9YDhzOp1yu92B3gaAYcbtdstisfg0N6AB9fc+/PBDPfLII5o5c6Zyc3P16KOPqqurSxMnTtTcuXPV2Nio5cuX63//93+1fPlyOZ1OhYWFXbROeHi4urq6JEmdnZ0Xzen72uVy+bSGP7q7u9XY2Oj3+QOJjIxURkbGkK0PDGctLS1yOp2B3gaAYehSTXApQRNQ7777rh588EFNnjxZlZWVkqTFixfroYce0lVXXSVJSk1NldVqVWlpqcrKyhQRESGXy3XRWl1dXZ6rM+Hh4RfN6fs6MjLSpzX8YbValZKS4vf5A/G1kIEfoqSkJK5AATDW3Nzs89ygCKiXX35ZFRUVmj17tp555hlP/YWGhnriqc/1118v6W+35r7++mu5XC6vYnQ4HIqPj5ckJSYmyuFweK3hcDgUFRWlESNG+LSGPywWi6Kiovw+H4D/uL0NwB8mFycC/jYGNTU1WrJkiX79619r1apVXhEzZ84cPfLII17z6+vrZbVaNX78eE2ZMkW9vb2eB8GlC5fu29raZLPZJElTp07VBx984LXG/v37NXnyZIWEhPi0BgAAQH8BDaiWlhYtXbpUN910kxYuXKiTJ0/qyy+/1JdffqlvvvlGs2bN0muvvab//M//VGtrq9566y0tX75cd955p6KjoxUfH6+f/OQnKi8v14EDB/TJJ5/o/vvv17Rp05SZmSnpQoR98sknqqys1JEjR1RdXa23335b8+bNkySf1gAAAOjP4g7ggwLr16/X6tWrLzmWn5+vZcuWaevWrdq6dataW1sVGxur22+/XQsWLFBIyIX26+jo0NKlS/XOO+9IkmbMmKHy8nKNGjXKs9aePXu0YsUKHT16VNdee63uvfde3XzzzZ5xX9YwUV9fL0leb88wVBqWV6jji9Yhfx1gOIi6dqwyyhYFehsAhimTn98BDajvKwIKCAwCCsDlMPn5HfBnoAAAAIYbAgoAAMAQAQUAAGCIgAIAADBEQAEAABgioAAAAAwRUAAAAIYIKAAAAEMEFAAAgCECCgAAwBABBQAAYIiAAgAAMERAAQAAGCKgAAAADBFQAAAAhggoAAAAQwQUAACAIQIKAADAEAEFAABgiIACAAAwREABAAAYIqAAAAAMEVAAAACGCCgAAABDBBQAAIAhAgoAAMAQAQUAAGCIgAIAADBEQAEAABgioAAAAAwRUAAAAIb8Cqja2lqdO3fukmPt7e168803L2tTAAAAwcyvgPrNb36jI0eOXHKsoaFBjzzyyGVtCgAAIJiF+jrxoYce0okTJyRJbrdbTzzxhKKjoy+ad/ToUV199dWDt0MAAIAg4/MVqFmzZsntdsvtdnuO9X3d9xESEqLMzEw9/fTTQ7JZAACAYODzFai8vDzl5eVJkubMmaMnnnhCycnJQ7YxAACAYOXXM1AvvfTSoMXT119/rd///veaMWOGJk+erF/+8peqq6vzjO/bt0+33XabJk2apNmzZ1/0gHpXV5eefPJJZWdnKysrSw888IBOnTrlNWcw1gAAAOjj8xWo/jo7O/X888/rz3/+s5xOp3p7e73GLRaL3n33XZ/Wuv/++/Xll19q1apViomJ0UsvvaQ777xTf/zjH+V2u7Vw4ULNnTtXK1as0H/913+prKxMo0ePVnZ2tiTpiSeeUF1dnZ599lmFhYXp8ccfV0lJiV5++WVJ0pEjRy57DQAAgP78CqiKigq98sormjZtmn70ox8pJMS/t5M6duyY3n//fdXU1GjKlCmSpMcee0x/+ctf9MYbb+irr75SWlqaSktLJUnJyclqaGjQhg0blJ2drba2Nr366qtav369pk6dKklatWqVZs+erY8++khZWVnavHnzZa8BAADQn18BtWvXLpWWlmrBggWX9eKjRo1SVVWVJkyY4DlmsVhksVjU3t6uuro63XjjjV7nTJ8+XRUVFXK73Tp48KDnWJ+kpCTFx8ertrZWWVlZg7IGAABAf35dOuru7tbEiRMv+8VHjhypH//4xwoLC/Mce+edd3Ts2DHl5OTIbrcrISHB65y4uDg5nU6dPn1abW1tGjVqlMLDwy+aY7fbJWlQ1gAAAOjPrytQ//qv/6o9e/Z4XbUZDB9++KEeeeQRzZw5U7m5uers7PSKK0mer10ul5xO50XjkhQeHq6uri5JGpQ1/OF2u9XR0eH3+QOxWCyKjIwcsvWB4czpdHq95QoA+MLtdstisfg016+Auvnmm/X444/r1KlTmjRp0iV/kN96661Ga7777rt68MEHNXnyZFVWVkq6EDEul8trXt/XkZGRioiIuGhcuvBbdX17Gow1/NHd3a3Gxka/zx9IZGSkMjIyhmx9YDhraWmR0+kM9DYADEOXuqhyKX4F1H333SdJevXVV/Xqq69eNG6xWIwC6uWXX1ZFRYVmz56tZ555xrP5xMREORwOr7kOh0NRUVEaMWKEEhIS9PXXX8vlcnn9gx0Oh+Lj4wdtDX9YrValpKT4ff5AfC1k4IcoKSmJK1AAjDU3N/s816+A2r17tz+nXVJNTY2WLFmiOXPmaNGiRV5hMHXqVH3wwQde8/fv36/JkycrJCREU6ZMUW9vrw4ePOh5S4KWlha1tbXJZrMN2hr+sFgsioqK8vt8AP7j9jYAf5hcnPAroMaMGePPaRdpaWnR0qVLddNNN2nhwoU6efKkZywiIkJz5sxRfn6+KisrlZ+fr/fee09vv/22NmzYIEmKj4/XT37yE5WXl2vp0qWKjIzU448/rmnTpikzM1OSBmUNAACA/ixuP65zP/fccwPO+Y//+I8B56xfv16rV6++5Fh+fr6WLVumPXv2aMWKFTp69KiuvfZa3Xvvvbr55ps98zo6OrR06VK98847kqQZM2aovLxco0aN8swZjDVM1NfXS5LX2zMMlYblFer4onXIXwcYDqKuHauMskWB3gaAYcrk57dfAZWenv6tY9HR0YqLi9Nbb71luuz3BgEFBAYBBeBymPz89usWXlNT00XHOjo6VFdXpyeeeEKPPfaYP8sCAAAMC/79DZZLiIqK0owZM1RcXKzly5cP1rIAAABBZ9ACqs8111yjI0eODPayAAAAQcOvW3iX4na7ZbfbtWHDhkH7LT0AAIBg5FdApaenf+t7Jbjdbm7hAQCA7zW/Aqq4uPiSARUdHa3c3FyNHz/+cvcFAAAQtPwKqHvvvXew9wEAADBs+P0M1KlTp1RdXa0PPvhA7e3tGjVqlKZOnaqioiLFxMQM5h4BAACCil+/hWe325Wfn6/NmzcrPDxcGRkZCg0N1Ysvvqhbb71VbW1tg71PAACAoOHXFagVK1YoNDRUb731lsaOHes53traqt/+9rdavXq1li1bNmibBAAACCZ+XYHau3evSkpKvOJJksaOHavi4mLt2bNnUDYHAAAQjPwKqPPnz3/rH9odPXq0zp49e1mbAgAACGZ+BVRaWpreeOONS4699tprSk1NvaxNAQAABDO/noG65557dOedd+rMmTO6+eabFRsbqy+//FJvvvmm9u7dq7Vr1w72PgEAAIKGXwH1L//yL1q2bJkqKyu9nneKjY3V008/rZtuumnQNggAABBs/H4fKIfDoYyMDD300EM6c+aMmpqa9Oyzz/L8EwAA+N7zK6Cqq6u1Zs0aFRYWKjk5WZKUmJiozz//XMuWLVN4eLh+/vOfD+pGAQAAgoVfAbVt2zbdd999WrBggedYYmKiysvLdfXVV2vTpk0EFAAA+N7y67fw2traNGHChEuOTZo0SV988cVlbQoAACCY+RVQY8aM0b59+y45Vltbq4SEhMvaFAAAQDDz6xbe7bffrhUrVqi7u1s33nijYmJidOrUKf35z3/Wiy++qAceeGCw9wkAABA0/AqooqIitbW16aWXXtKmTZs8x6+44grdcccdmjt37mDtDwAAIOj4/TYGDz30kO655x59/PHH+vrrrzVy5EhNnDjxW//ECwAAwPeF3wElSSNGjFBOTs5g7QUAAGBY8OshcgAAgB8yAgoAAMAQAQUAAGCIgAIAADBEQAEAABgioAAAAAwRUAAAAIYIKAAAAEMEFAAAgCECCgAAwBABBQAAYIiAAgAAMERAAQAAGAqqgHrhhRc0Z84cr2Pl5eVKS0vz+sjLy/OM9/b2au3atcrJyVFmZqbmz5+v1tZWrzUaGxtVWFiozMxM5eXlacuWLV7jvqwBAADQJ2gCauvWrVqzZs1Fxz/77DPddddd2rt3r+fjlVde8YyvW7dONTU1WrJkibZt26be3l7NmzdPLpdLknT69GnNnTtX48aN044dO1RcXKzKykrt2LHD5zUAAAD6C3hAtbW16a677lJlZaXGjx/vNeZ2u9Xc3KwbbrhBsbGxno/Ro0dLklwul6qrq1VSUqLc3Fylp6dr9erVstvt2rVrlyRp+/btslqtWrx4sZKTk1VQUKCioiJVVVX5vAYAAEB/AQ+oTz/9VFarVa+//romTZrkNXb8+HF1dHTouuuuu+S5TU1NOnfunLKzsz3HRo4cqYyMDNXW1kqS6urqNG3aNIWGhnrmTJ8+XUePHtXJkyd9WgMAAKC/0IGnDK28vDyvZ5r6O3TokCTppZde0p49exQSEqIZM2aotLRUI0aMkN1ulyQlJiZ6nRcXF+cZs9vtSk1NvWhckk6cOOHTGv5wu93q6Ojw+/yBWCwWRUZGDtn6wHDmdDrldrsDvQ0Aw4zb7ZbFYvFpbsAD6h85dOiQQkJCFBcXp/Xr1+v48eNavny5Dh8+rM2bN8vpdEqSwsLCvM4LDw/XmTNnJEmdnZ2XHJekrq4un9bwR3d3txobG/0+fyCRkZHKyMgYsvWB4aylpcXzvQ0AJv6+B75NUAfU3XffrV/96lcaNWqUJCk1NVWxsbG6/fbbVV9fr4iICEkXnmPq+1y6EEZ9V2ciIiIuehi8q6tLkhQVFeXTGv6wWq1KSUnx+/yB+FrIwA9RUlISV6AAGGtubvZ5blAHVEhIiCee+lx//fWSLtya67vt5nA4NG7cOM8ch8OhtLQ0SVJCQoIcDofXGn1fx8fHq6enZ8A1/GGxWBQVFeX3+QD8x+1tAP4wuTgR8IfI/5GysjIVFRV5Hauvr5ckpaSkKD09XdHR0Tpw4IBnvL29XQ0NDbLZbJIkm82mgwcP6vz58545+/fvV1JSkmJiYnxaAwAAoL+gDqhZs2Zp3759eu6553T8+HG99957evTRR3XLLbcoOTlZYWFhKiwsVGVlpXbv3q2mpiaVlpYqISFBM2fOlCQVFBTo7NmzWrRokZqbm7Vz505t2rRJCxculCSf1gAAAOgvqG/h/du//ZvWrFmjqqoq/eEPf9CIESP005/+VPfdd59nTklJiXp6elReXq7Ozk7ZbDZt3LhRVqtVkhQTE6MNGzaooqJC+fn5io2NVVlZmfLz831eAwAAoD+LmyctB13fbcYJEyYM+Ws1LK9Qxxf82RlAkqKuHauMskWB3gaAYcrk53dQ38IDAAAIRgQUAACAIQIKAADAEAEFAABgiIACAAAwREABAAAYIqAAAAAMEVAAAACGCCgAAABDBBQAAIAhAgoAAMAQAQUAAGCIgAIAADBEQAEAABgioAAAAAwRUAAAAIYIKAAAAEMEFAAAgCECCgAAwBABBQAAYIiAAgAAMERAAQAAGCKgAAAADBFQAAAAhggoAAAAQwQUAACAIQIKAADAEAEFAABgiIACAAAwREABAAAYIqAAAAAMEVAAAACGCCgAAABDBBQAAIAhAgoAAMAQAQUAAGAoqALqhRde0Jw5c7yONTY2qrCwUJmZmcrLy9OWLVu8xnt7e7V27Vrl5OQoMzNT8+fPV2tr66CvAQAA0CdoAmrr1q1as2aN17HTp09r7ty5GjdunHbs2KHi4mJVVlZqx44dnjnr1q1TTU2NlixZom3btqm3t1fz5s2Ty+UatDUAAAD6Cw30Btra2vT444/rwIEDGj9+vNfY9u3bZbVatXjxYoWGhio5OVnHjh1TVVWVCgoK5HK5VF1drQcffFC5ubmSpNWrVysnJ0e7du3SLbfcMihrAAAA9BfwK1CffvqprFarXn/9dU2aNMlrrK6uTtOmTVNo6N86b/r06Tp69KhOnjyppqYmnTt3TtnZ2Z7xkSNHKiMjQ7W1tYO2BgAAQH8BvwKVl5envLy8S47Z7XalpqZ6HYuLi5MknThxQna7XZKUmJh40Zy+scFYwx9ut1sdHR1+nz8Qi8WiyMjIIVsfGM6cTqfcbnegtwFgmHG73bJYLD7NDXhA/SOdnZ0KCwvzOhYeHi5J6urqktPplKRLzjlz5sygreGP7u5uNTY2+n3+QCIjI5WRkTFk6wPDWUtLi+d7GwBM/H0PfJugDqiIiIiLHuTu6uqSJEVFRSkiIkKS5HK5PJ/3zem7OjMYa/jDarUqJSXF7/MH4mshAz9ESUlJXIECYKy5udnnuUEdUAkJCXI4HF7H+r6Oj49XT0+P59i4ceO85qSlpQ3aGv6wWCyKiory+3wA/uP2NgB/mFycCPhD5P+IzWbTwYMHdf78ec+x/fv3KykpSTExMUpPT1d0dLQOHDjgGW9vb1dDQ4NsNtugrQEAANBfUAdUQUGBzp49q0WLFqm5uVk7d+7Upk2btHDhQkkX7lMWFhaqsrJSu3fvVlNTk0pLS5WQkKCZM2cO2hoAAAD9BfUtvJiYGG3YsEEVFRXKz89XbGysysrKlJ+f75lTUlKinp4elZeXq7OzUzabTRs3bpTVah20NQAAAPqzuHnSctDV19dLkiZMmDDkr9WwvEIdX/BnZwBJirp2rDLKFgV6GwCGKZOf30F9Cw8AACAYEVAAAACGCCgAAABDBBQAAIAhAgoAAMAQAQUAAGCIgAIAADBEQAEAABgioAAAAAwRUAAAAIYIKAAAAEMEFAAAgCECCgAAwBABBQAAYIiAAgAAMERAAQAAGCKgAAAADBFQAAAAhggoAAAAQwQUAACAIQIKAADAEAEFAABgiIACAAAwREABAAAYIqAAAAAMEVAAAACGCCgAAABDBBQAAIAhAgoAAMAQAQUAAGCIgAIAADBEQAEAABgioAAAAAwRUAAAAIYIKAAAAEMEFAAAgKFhEVBtbW1KS0u76GPnzp2SpMbGRhUWFiozM1N5eXnasmWL1/m9vb1au3atcnJylJmZqfnz56u1tdVrzkBrAAAA9AkN9AZ80dTUpPDwcL377ruyWCye4yNGjNDp06c1d+5c5eXl6cknn9THH3+sJ598UldeeaUKCgokSevWrVNNTY2WLVumhIQErVixQvPmzdMbb7yhsLAwn9YAAADoMywC6tChQxo/frzi4uIuGtu8ebOsVqsWL16s0NBQJScn69ixY6qqqlJBQYFcLpeqq6v14IMPKjc3V5K0evVq5eTkaNeuXbrlllu0ffv2f7gGAABAf8PiFt5nn32m5OTkS47V1dVp2rRpCg39WwtOnz5dR48e1cmTJ9XU1KRz584pOzvbMz5y5EhlZGSotrbWpzUAAAD6GzZXoEaNGqVf//rXamlp0T/90z/p7rvv1owZM2S325Wamuo1v+9K1YkTJ2S32yVJiYmJF83pGxtojauvvtp4z263Wx0dHcbn+cpisSgyMnLI1geGM6fTKbfbHehtABhm3G6316NC/0jQB1RPT48+//xzpaSk6OGHH1Z0dLTefPNNLViwQC+++KI6OzsVFhbmdU54eLgkqaurS06nU5IuOefMmTOSNOAa/uju7lZjY6Nf5/oiMjJSGRkZQ7Y+MJy1tLR4vvcBwMTf98C3CfqACg0N1YEDB3TFFVcoIiJCknTDDTfo8OHD2rhxoyIiIuRyubzO6YueqKgozzkul8vzed+cvis4A63hD6vVqpSUFL/O9YWvhQz8ECUlJXEFCoCx5uZmn+cGfUBJ0pVXXnnRseuvv1579+5VQkKCHA6H11jf1/Hx8erp6fEcGzdunNectLQ0SRpwDX9YLBa/4wvA5eH2NgB/mFycCPqHyA8fPqzJkyfrwIEDXsf/+7//WykpKbLZbDp48KDOnz/vGdu/f7+SkpIUExOj9PR0RUdHe53f3t6uhoYG2Ww2SRpwDQAAgP6CPqCSk5N13XXXafHixaqrq9ORI0f09NNP6+OPP9bdd9+tgoICnT17VosWLVJzc7N27typTZs2aeHChZIu3MssLCxUZWWldu/eraamJpWWliohIUEzZ86UpAHXAIDvWi+3IIGLBNP3RdDfwgsJCdH69eu1cuVK3XfffWpvb1dGRoZefPFFz2/ObdiwQRUVFcrPz1dsbKzKysqUn5/vWaOkpEQ9PT0qLy9XZ2enbDabNm7cKKvVKkmKiYkZcA0A+C6FWCyqPvS5Tjg7A70VICgkRkbot6nXBXobHhY3T1oOuvr6eknShAkThvy1GpZXqOOL1oEnAj8AUdeOVUbZokBvY9BU/LVBreeG7u1QgOFk7JVRWjRpaH/73OTnd9DfwgMAAAg2BBQAAIAhAgoAAMAQAQUAAGCIgAIAADBEQAEAABgioAAAAAwRUAAAAIYIKAAAAEMEFAAAgCECCgAAwBABBQAAYIiAAgAAMERAAQAAGCKgAAAADBFQAAAAhggoAAAAQwQUAACAIQIKAADAEAEFAABgiIACAAAwREABAAAYIqAAAAAMEVAAAACGCCgAAABDBBQAAIAhAgoAAMAQAQUAAGCIgAIAADBEQAEAABgioAAAAAwRUAAAAIYIKAAAAEMEFAAAgCECCgAAwBABBQAAYIiA+j+9vb1au3atcnJylJmZqfnz56u1tTXQ2wIAAEGIgPo/69atU01NjZYsWaJt27apt7dX8+bNk8vlCvTWAABAkCGgJLlcLlVXV6ukpES5ublKT0/X6tWrZbfbtWvXrkBvDwAABBkCSlJTU5POnTun7Oxsz7GRI0cqIyNDtbW1AdwZAAAIRqGB3kAwsNvtkqTExESv43FxcZ4xE93d3XK73frkk08GZX/fxmKxqCfn/ynk/PkhfR1guOi64grV19fL7XYHeiuXzWKx6P+d79H5cP5/LiBJV5zvGvLv7+7ublksFp/mElCSnE6nJCksLMzreHh4uM6cOWO8Xt9/+L7+l3A5QqNHDPlrAMPNd/G9910YYeV/ooG/N5Tf3xaLhYAyERERIenCs1B9n0tSV1eXIiMjjdfLysoatL0BAIDgw7Vh/e3WncPh8DrucDgUHx8fiC0BAIAgRkBJSk9PV3R0tA4cOOA51t7eroaGBtlstgDuDAAABCNu4enCs0+FhYWqrKzU6NGjNWbMGK1YsUIJCQmaOXNmoLcHAACCDAH1f0pKStTT06Py8nJ1dnbKZrNp48aNslqtgd4aAAAIMhb39+H3fQEAAL5DPAMFAABgiIACAAAwREABAAAYIqAAAAAMEVAAAACGCCgAAABDBBQAAIAhAgq4DL29vVq7dq1ycnKUmZmp+fPnq7W1NdDbAjDIXnjhBc2ZMyfQ20AQIaCAy7Bu3TrV1NRoyZIl2rZtm3p7ezVv3jy5XK5Abw3AINm6davWrFkT6G0gyBBQgJ9cLpeqq6tVUlKi3Nxcpaena/Xq1bLb7dq1a1egtwfgMrW1temuu+5SZWWlxo8fH+jtIMgQUICfmpqadO7cOWVnZ3uOjRw5UhkZGaqtrQ3gzgAMhk8//VRWq1Wvv/66Jk2aFOjtIMjwx4QBP9ntdklSYmKi1/G4uDjPGIDhKy8vT3l5eYHeBoIUV6AAPzmdTklSWFiY1/Hw8HB1dXUFYksAgO8IAQX4KSIiQpIuemC8q6tLkZGRgdgSAOA7QkABfuq7dedwOLyOOxwOxcfHB2JLAIDvCAEF+Ck9PV3R0dE6cOCA51h7e7saGhpks9kCuDMAwFDjIXLAT2FhYSosLFRlZaVGjx6tMWPGaMWKFUpISNDMmTMDvT0AwBAioIDLUFJSop6eHpWXl6uzs1M2m00bN26U1WoN9NYAAEPI4na73YHeBAAAwHDCM1AAAACGCCgAAABDBBQAAIAhAgoAAMAQAQUAAGCIgAIAADBEQAEAABgioAAAAAwRUAAAAIYIKAAAAEMEFAAM4JlnntHEiRP1zTffeB1ft26dpkyZIqfTGaCdAQgUAgoABvCzn/1MXV1devvtt72Ov/baa7r55psVGRkZoJ0BCBQCCgAGkJycrKysLL322mueYx9++KGOHj2q2267LYA7AxAoBBQA+KCgoEB1dXX6n//5H0nSH//4RyUlJSkrKyvAOwMQCAQUAPig71bda6+9pq6uLv3pT3/i6hPwAxYa6A0AwHBw5ZVXavbs2frTn/6k1NRUdXR06N///d8DvS0AAcIVKADw0c9+9jMdOnRImzdv1j//8z8rPj4+0FsCECAEFAD4aMqUKUpKStIHH3zA7TvgB46AAgADubm5uuqqq3TjjTcGeisAAoiAAgAfud1u7dmzR7feeqvCwsICvR0AAcRD5AAwgLNnz2rTpk2qr69Xa2ur5syZE+gtAQgwAgoABhAREaFt27apt7dXS5cu1dixYwO9JQABZnG73e5AbwIAAGA44RkoAAAAQwQUAACAIQIKAADAEAEFAABgiIACAAAwREABAAAYIqAAAAAMEVAAAACGCCgAAABD/x9LhTrKqP/lkAAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.countplot(x=\"y\", data=data, palette=\"hls\")\n",
"plt.show()\n",
"plt.savefig(\"count_plot\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"percentage of no subscription is 88.73458288821988\n",
"percentage of subscription 11.265417111780131\n"
]
}
],
"source": [
"count_no_sub = len(data[data[\"y\"] == 0])\n",
"count_sub = len(data[data[\"y\"] == 1])\n",
"pct_of_no_sub = count_no_sub / (count_no_sub + count_sub)\n",
"print(\"percentage of no subscription is\", pct_of_no_sub * 100)\n",
"pct_of_sub = count_sub / (count_no_sub + count_sub)\n",
"print(\"percentage of subscription\", pct_of_sub * 100)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" age | \n",
" duration | \n",
" campaign | \n",
" pdays | \n",
" previous | \n",
" emp_var_rate | \n",
" cons_price_idx | \n",
" cons_conf_idx | \n",
" euribor3m | \n",
" nr_employed | \n",
"
\n",
" \n",
" y | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 39.911185 | \n",
" 220.844807 | \n",
" 2.633085 | \n",
" 984.113878 | \n",
" 0.132374 | \n",
" 0.248875 | \n",
" 93.603757 | \n",
" -40.593097 | \n",
" 3.811491 | \n",
" 5176.166600 | \n",
"
\n",
" \n",
" 1 | \n",
" 40.913147 | \n",
" 553.191164 | \n",
" 2.051724 | \n",
" 792.035560 | \n",
" 0.492672 | \n",
" -1.233448 | \n",
" 93.354386 | \n",
" -39.789784 | \n",
" 2.123135 | \n",
" 5095.115991 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" age duration campaign pdays previous emp_var_rate \\\n",
"y \n",
"0 39.911185 220.844807 2.633085 984.113878 0.132374 0.248875 \n",
"1 40.913147 553.191164 2.051724 792.035560 0.492672 -1.233448 \n",
"\n",
" cons_price_idx cons_conf_idx euribor3m nr_employed \n",
"y \n",
"0 93.603757 -40.593097 3.811491 5176.166600 \n",
"1 93.354386 -39.789784 2.123135 5095.115991 "
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.groupby(\"y\").mean(numeric_only=True)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" age | \n",
" duration | \n",
" campaign | \n",
" pdays | \n",
" previous | \n",
" emp_var_rate | \n",
" cons_price_idx | \n",
" cons_conf_idx | \n",
" euribor3m | \n",
" nr_employed | \n",
" y | \n",
"
\n",
" \n",
" job | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" admin. | \n",
" 38.187296 | \n",
" 254.312128 | \n",
" 2.623489 | \n",
" 954.319229 | \n",
" 0.189023 | \n",
" 0.015563 | \n",
" 93.534054 | \n",
" -40.245433 | \n",
" 3.550274 | \n",
" 5164.125350 | \n",
" 0.129726 | \n",
"
\n",
" \n",
" blue-collar | \n",
" 39.555760 | \n",
" 264.542360 | \n",
" 2.558461 | \n",
" 985.160363 | \n",
" 0.122542 | \n",
" 0.248995 | \n",
" 93.656656 | \n",
" -41.375816 | \n",
" 3.771996 | \n",
" 5175.615150 | \n",
" 0.068943 | \n",
"
\n",
" \n",
" entrepreneur | \n",
" 41.723214 | \n",
" 263.267857 | \n",
" 2.535714 | \n",
" 981.267170 | \n",
" 0.138736 | \n",
" 0.158723 | \n",
" 93.605372 | \n",
" -41.283654 | \n",
" 3.791120 | \n",
" 5176.313530 | \n",
" 0.085165 | \n",
"
\n",
" \n",
" housemaid | \n",
" 45.500000 | \n",
" 250.454717 | \n",
" 2.639623 | \n",
" 960.579245 | \n",
" 0.137736 | \n",
" 0.433396 | \n",
" 93.676576 | \n",
" -39.495283 | \n",
" 4.009645 | \n",
" 5179.529623 | \n",
" 0.100000 | \n",
"
\n",
" \n",
" management | \n",
" 42.362859 | \n",
" 257.058140 | \n",
" 2.476060 | \n",
" 962.647059 | \n",
" 0.185021 | \n",
" -0.012688 | \n",
" 93.522755 | \n",
" -40.489466 | \n",
" 3.611316 | \n",
" 5166.650513 | \n",
" 0.112175 | \n",
"
\n",
" \n",
" retired | \n",
" 62.027326 | \n",
" 273.712209 | \n",
" 2.476744 | \n",
" 897.936047 | \n",
" 0.327326 | \n",
" -0.698314 | \n",
" 93.430786 | \n",
" -38.573081 | \n",
" 2.770066 | \n",
" 5122.262151 | \n",
" 0.252326 | \n",
"
\n",
" \n",
" self-employed | \n",
" 39.949331 | \n",
" 264.142153 | \n",
" 2.660802 | \n",
" 976.621393 | \n",
" 0.143561 | \n",
" 0.094159 | \n",
" 93.559982 | \n",
" -40.488107 | \n",
" 3.689376 | \n",
" 5170.674384 | \n",
" 0.104856 | \n",
"
\n",
" \n",
" services | \n",
" 37.926430 | \n",
" 258.398085 | \n",
" 2.587805 | \n",
" 979.974049 | \n",
" 0.154951 | \n",
" 0.175359 | \n",
" 93.634659 | \n",
" -41.290048 | \n",
" 3.699187 | \n",
" 5171.600126 | \n",
" 0.081381 | \n",
"
\n",
" \n",
" student | \n",
" 25.894857 | \n",
" 283.683429 | \n",
" 2.104000 | \n",
" 840.217143 | \n",
" 0.524571 | \n",
" -1.408000 | \n",
" 93.331613 | \n",
" -40.187543 | \n",
" 1.884224 | \n",
" 5085.939086 | \n",
" 0.314286 | \n",
"
\n",
" \n",
" technician | \n",
" 38.507638 | \n",
" 250.232241 | \n",
" 2.577339 | \n",
" 964.408127 | \n",
" 0.153789 | \n",
" 0.274566 | \n",
" 93.561471 | \n",
" -39.927569 | \n",
" 3.820401 | \n",
" 5175.648391 | \n",
" 0.108260 | \n",
"
\n",
" \n",
" unemployed | \n",
" 39.733728 | \n",
" 249.451677 | \n",
" 2.564103 | \n",
" 935.316568 | \n",
" 0.199211 | \n",
" -0.111736 | \n",
" 93.563781 | \n",
" -40.007594 | \n",
" 3.466583 | \n",
" 5157.156509 | \n",
" 0.142012 | \n",
"
\n",
" \n",
" unknown | \n",
" 45.563636 | \n",
" 239.675758 | \n",
" 2.648485 | \n",
" 938.727273 | \n",
" 0.154545 | \n",
" 0.357879 | \n",
" 93.718942 | \n",
" -38.797879 | \n",
" 3.949033 | \n",
" 5172.931818 | \n",
" 0.112121 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" age duration campaign pdays previous \\\n",
"job \n",
"admin. 38.187296 254.312128 2.623489 954.319229 0.189023 \n",
"blue-collar 39.555760 264.542360 2.558461 985.160363 0.122542 \n",
"entrepreneur 41.723214 263.267857 2.535714 981.267170 0.138736 \n",
"housemaid 45.500000 250.454717 2.639623 960.579245 0.137736 \n",
"management 42.362859 257.058140 2.476060 962.647059 0.185021 \n",
"retired 62.027326 273.712209 2.476744 897.936047 0.327326 \n",
"self-employed 39.949331 264.142153 2.660802 976.621393 0.143561 \n",
"services 37.926430 258.398085 2.587805 979.974049 0.154951 \n",
"student 25.894857 283.683429 2.104000 840.217143 0.524571 \n",
"technician 38.507638 250.232241 2.577339 964.408127 0.153789 \n",
"unemployed 39.733728 249.451677 2.564103 935.316568 0.199211 \n",
"unknown 45.563636 239.675758 2.648485 938.727273 0.154545 \n",
"\n",
" emp_var_rate cons_price_idx cons_conf_idx euribor3m \\\n",
"job \n",
"admin. 0.015563 93.534054 -40.245433 3.550274 \n",
"blue-collar 0.248995 93.656656 -41.375816 3.771996 \n",
"entrepreneur 0.158723 93.605372 -41.283654 3.791120 \n",
"housemaid 0.433396 93.676576 -39.495283 4.009645 \n",
"management -0.012688 93.522755 -40.489466 3.611316 \n",
"retired -0.698314 93.430786 -38.573081 2.770066 \n",
"self-employed 0.094159 93.559982 -40.488107 3.689376 \n",
"services 0.175359 93.634659 -41.290048 3.699187 \n",
"student -1.408000 93.331613 -40.187543 1.884224 \n",
"technician 0.274566 93.561471 -39.927569 3.820401 \n",
"unemployed -0.111736 93.563781 -40.007594 3.466583 \n",
"unknown 0.357879 93.718942 -38.797879 3.949033 \n",
"\n",
" nr_employed y \n",
"job \n",
"admin. 5164.125350 0.129726 \n",
"blue-collar 5175.615150 0.068943 \n",
"entrepreneur 5176.313530 0.085165 \n",
"housemaid 5179.529623 0.100000 \n",
"management 5166.650513 0.112175 \n",
"retired 5122.262151 0.252326 \n",
"self-employed 5170.674384 0.104856 \n",
"services 5171.600126 0.081381 \n",
"student 5085.939086 0.314286 \n",
"technician 5175.648391 0.108260 \n",
"unemployed 5157.156509 0.142012 \n",
"unknown 5172.931818 0.112121 "
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.groupby(\"job\").mean(numeric_only=True)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" age | \n",
" duration | \n",
" campaign | \n",
" pdays | \n",
" previous | \n",
" emp_var_rate | \n",
" cons_price_idx | \n",
" cons_conf_idx | \n",
" euribor3m | \n",
" nr_employed | \n",
" y | \n",
"
\n",
" \n",
" marital | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" divorced | \n",
" 44.899393 | \n",
" 253.790330 | \n",
" 2.61340 | \n",
" 968.639853 | \n",
" 0.168690 | \n",
" 0.163985 | \n",
" 93.606563 | \n",
" -40.707069 | \n",
" 3.715603 | \n",
" 5170.878643 | \n",
" 0.103209 | \n",
"
\n",
" \n",
" married | \n",
" 42.307165 | \n",
" 257.438623 | \n",
" 2.57281 | \n",
" 967.247673 | \n",
" 0.155608 | \n",
" 0.183625 | \n",
" 93.597367 | \n",
" -40.270659 | \n",
" 3.745832 | \n",
" 5171.848772 | \n",
" 0.101573 | \n",
"
\n",
" \n",
" single | \n",
" 33.158714 | \n",
" 261.524378 | \n",
" 2.53380 | \n",
" 949.909578 | \n",
" 0.211359 | \n",
" -0.167989 | \n",
" 93.517300 | \n",
" -40.918698 | \n",
" 3.317447 | \n",
" 5155.199265 | \n",
" 0.140041 | \n",
"
\n",
" \n",
" unknown | \n",
" 40.275000 | \n",
" 312.725000 | \n",
" 3.18750 | \n",
" 937.100000 | \n",
" 0.275000 | \n",
" -0.221250 | \n",
" 93.471250 | \n",
" -40.820000 | \n",
" 3.313038 | \n",
" 5157.393750 | \n",
" 0.150000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" age duration campaign pdays previous emp_var_rate \\\n",
"marital \n",
"divorced 44.899393 253.790330 2.61340 968.639853 0.168690 0.163985 \n",
"married 42.307165 257.438623 2.57281 967.247673 0.155608 0.183625 \n",
"single 33.158714 261.524378 2.53380 949.909578 0.211359 -0.167989 \n",
"unknown 40.275000 312.725000 3.18750 937.100000 0.275000 -0.221250 \n",
"\n",
" cons_price_idx cons_conf_idx euribor3m nr_employed y \n",
"marital \n",
"divorced 93.606563 -40.707069 3.715603 5170.878643 0.103209 \n",
"married 93.597367 -40.270659 3.745832 5171.848772 0.101573 \n",
"single 93.517300 -40.918698 3.317447 5155.199265 0.140041 \n",
"unknown 93.471250 -40.820000 3.313038 5157.393750 0.150000 "
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.groupby(\"marital\").mean(numeric_only=True)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" age | \n",
" duration | \n",
" campaign | \n",
" pdays | \n",
" previous | \n",
" emp_var_rate | \n",
" cons_price_idx | \n",
" cons_conf_idx | \n",
" euribor3m | \n",
" nr_employed | \n",
" y | \n",
"
\n",
" \n",
" education | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" Basic | \n",
" 42.163910 | \n",
" 263.043874 | \n",
" 2.559498 | \n",
" 974.877967 | \n",
" 0.141053 | \n",
" 0.191329 | \n",
" 93.639933 | \n",
" -40.927595 | \n",
" 3.729654 | \n",
" 5172.014113 | \n",
" 0.087029 | \n",
"
\n",
" \n",
" high.school | \n",
" 37.998213 | \n",
" 260.886810 | \n",
" 2.568576 | \n",
" 964.358382 | \n",
" 0.185917 | \n",
" 0.032937 | \n",
" 93.584857 | \n",
" -40.940641 | \n",
" 3.556157 | \n",
" 5164.994735 | \n",
" 0.108355 | \n",
"
\n",
" \n",
" illiterate | \n",
" 48.500000 | \n",
" 276.777778 | \n",
" 2.277778 | \n",
" 943.833333 | \n",
" 0.111111 | \n",
" -0.133333 | \n",
" 93.317333 | \n",
" -39.950000 | \n",
" 3.516556 | \n",
" 5171.777778 | \n",
" 0.222222 | \n",
"
\n",
" \n",
" professional.course | \n",
" 40.080107 | \n",
" 252.533855 | \n",
" 2.586115 | \n",
" 960.765974 | \n",
" 0.163075 | \n",
" 0.173012 | \n",
" 93.569864 | \n",
" -40.124108 | \n",
" 3.710457 | \n",
" 5170.155979 | \n",
" 0.113485 | \n",
"
\n",
" \n",
" university.degree | \n",
" 38.879191 | \n",
" 253.223373 | \n",
" 2.563527 | \n",
" 951.807692 | \n",
" 0.192390 | \n",
" -0.028090 | \n",
" 93.493466 | \n",
" -39.975805 | \n",
" 3.529663 | \n",
" 5163.226298 | \n",
" 0.137245 | \n",
"
\n",
" \n",
" unknown | \n",
" 43.481225 | \n",
" 262.390526 | \n",
" 2.596187 | \n",
" 942.830734 | \n",
" 0.226459 | \n",
" 0.059099 | \n",
" 93.658615 | \n",
" -39.877816 | \n",
" 3.571098 | \n",
" 5159.549509 | \n",
" 0.145003 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" age duration campaign pdays previous \\\n",
"education \n",
"Basic 42.163910 263.043874 2.559498 974.877967 0.141053 \n",
"high.school 37.998213 260.886810 2.568576 964.358382 0.185917 \n",
"illiterate 48.500000 276.777778 2.277778 943.833333 0.111111 \n",
"professional.course 40.080107 252.533855 2.586115 960.765974 0.163075 \n",
"university.degree 38.879191 253.223373 2.563527 951.807692 0.192390 \n",
"unknown 43.481225 262.390526 2.596187 942.830734 0.226459 \n",
"\n",
" emp_var_rate cons_price_idx cons_conf_idx euribor3m \\\n",
"education \n",
"Basic 0.191329 93.639933 -40.927595 3.729654 \n",
"high.school 0.032937 93.584857 -40.940641 3.556157 \n",
"illiterate -0.133333 93.317333 -39.950000 3.516556 \n",
"professional.course 0.173012 93.569864 -40.124108 3.710457 \n",
"university.degree -0.028090 93.493466 -39.975805 3.529663 \n",
"unknown 0.059099 93.658615 -39.877816 3.571098 \n",
"\n",
" nr_employed y \n",
"education \n",
"Basic 5172.014113 0.087029 \n",
"high.school 5164.994735 0.108355 \n",
"illiterate 5171.777778 0.222222 \n",
"professional.course 5170.155979 0.113485 \n",
"university.degree 5163.226298 0.137245 \n",
"unknown 5159.549509 0.145003 "
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.groupby(\"education\").mean(numeric_only=True)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAIbCAYAAADhDzp7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACEyElEQVR4nO3deVxN+f8H8NdtUSEkS1kjU9kLZd9jfMluhrGMfSxjrA1lzVIZQkS2LDG2DLJM1jGYMZaSQYPJEsmWLVJpu+f3R7/u3Ou2XW73nMvr+Xh4qHNO5766S/d9P5/P+XxkgiAIICIiIiIAgIHYAYiIiIikhMURERERkRIWR0RERERKWBwRERERKWFxRERERKSExRERERGREhZHREREREpYHBEREREpYXFERER6i/MYU2FgcUSkoUGDBsHe3l7lX506ddCmTRvMnTsXr1+/1kkODw8PtGvXTie39aFyuq+U/127dk3siHojIyMDHh4ecHJyQoMGDXD+/PlCvb24uDjY29tj7969Gv2cvb09AgICNL6d/P5duHAB7dq1g4eHh+JnAwMDsWHDBsX3+vCaIP1gJHYAIn1Uq1YtzJkzR/F9eno6/vnnHyxduhQ3btzAjh07IJPJREwoHe/fV8psbW11nEZ//fHHH9i3bx/Gjh2LZs2aoVatWmJH0opy5cph165diu+fPXuGcePGYcyYMWjTpo1ie40aNbBy5UoUL15csW358uUYN26cLuPSZ4LFEdEHKF68OBwdHVW2OTs7IykpCStWrMCVK1fU9n+ucrqvSHMJCQkAgF69eqFy5crihtGiIkWKqDw/4uLiAABVqlRRe958KgUhSR+71Yi0qE6dOgCAR48eAYBaNwAA7N27F/b29oo3gYCAAHTo0AErV66Ei4sLWrRogdevX0MQBGzevBn/+9//UK9ePXTo0AEbNmxQG2Oxd+9efPnll6hbty66deuG06dPq+wPDw/H8OHD4ezsjDp16qBdu3YICAiAXC5XHHPo0CF069YN9erVQ5MmTeDu7o6nT5+qnGf37t3o0qWLogsxICAAmZmZWrnf2rVrBx8fHwwePBj16tXDjBkzAGQVBLNnz0azZs1Qt25dfP311zh37pzKz6ampsLb2xvNmjWDk5MTpk6diu3bt8Pe3l5xzKBBgzBo0CCVn7tw4YKiuybbo0ePMHnyZLi4uKB+/foYPHgwrl+/rtif3QV0+PBhjB8/Hk5OTnBxccHMmTORnJysOC6vx+7UqVOwt7fHn3/+qZInIiIC9vb2uHTpktr94+HhoXgeubq6Kn6X1NRUrFq1Cp06dULdunXRsWNHrFu3TuWxHTRoENzd3TF+/Hg4Ojpi6NChBXtQchAfHw9PT0+0bt0a9erVQ58+ffDbb7+pHff27Vu4u7vDyckJTZs2xYIFC5CSkvLBt5tN+fWU/fiuXLlS5bF+X2E+b+nTxZYjIi2KiYkBAI0/2T969AinT5/GsmXLkJCQgJIlS+Knn35CcHAwhg4diubNm+PatWvw8/NDRkYGRo0aBQB4/Pgx1q1bhwkTJqBo0aJYtmwZxo8fj5MnT8LS0hI3b97EkCFD0KlTJyxbtgyCIODgwYNYuXIlqlevji5duuDSpUuYOnUqxo4dC2dnZzx58gSLFy/GlClT8PPPPwMA1q5di2XLlmHgwIHw9PTEjRs3EBAQgMePH8PHxyfP300QBGRkZKhtNzQ0VOl63LZtG4YOHYqRI0eiWLFiSE1NxeDBg/H8+XNMmjQJ5cqVw549ezBixAgEBQWhadOmAAB3d3f88ccfmDhxIqpVq4Zt27bB399fo/sfAF6+fIl+/frBzMwMs2bNgpmZGYKDgzFgwAD88ssvKl2Ac+bMQe/evREYGIirV69i2bJlsLCwwJQpUwAAixYtyvWxGzFiBMqVK4f9+/ejRYsWinOGhobCxsYGDRs2VMs2duxYWFlZYfXq1Vi5ciWqVasGQRAwevRo/P333xg3bhwcHBxw4cIF+Pv748GDB5g/f77i5w8fPoxu3bph9erVKoWTJp4/f44+ffrAxMQEkyZNgoWFBfbu3Yvvv/8eixYtQrdu3RTHbt26Fa1bt4a/vz9iYmKwbNkyPH78GKtWrfqg287Jrl270LdvX/Tp0wdfffVVjsd8zPOWPnMCEWlk4MCBwoABA4T09HTFv+fPnwthYWGCi4uL0LdvX0EulwuCIAht27YVpk2bpvLze/bsEezs7IQHDx4IgiAIK1asEOzs7ITw8HDFMa9fvxZq1aoleHt7q/zs/PnzheHDhwuCIAjTpk0T7OzshNu3byv2//XXX4KdnZ1w4sQJQRAEYd++fcKIESOEzMxMxTGZmZlCw4YNhVmzZgmCIAhr164VnJychNTUVMUxp06dEgICAgS5XC68efNGqFevnjB79myVLCEhIYKdnZ0QHR2d531lZ2eX479Dhw4pjmvbtq3g6uqq8rO7du0S7OzshL///luxTS6XCwMGDBB69eolCIIg/Pvvv4KdnZ3w888/K47JyMgQvvzyS8HOzk4lx8CBA1XOf/78ecHOzk44f/68IAiCsHTpUqFu3bpCXFyc4pjU1FShffv2wg8//CAIgiA8ePBAsLOzE9zd3VXONWjQIMHNzU0QhII9dkuWLBEcHR2Ft2/fCoIgCCkpKUKDBg2ENWvW5Hpfvv+8OXXqlNr9KAiCsGrVKpXHZeDAgUL9+vVVHt+CyP5d9+zZIwiCICxatEioXbu2yv0jCIIwePBgoXnz5ornmJ2dneDm5qbynNu8ebNgZ2cn/PvvvxrfrrL3X092dnbCihUrFN9PmzZNaNu2rSAIwkc9b4nYrUb0AcLDw1G7dm3Fv2bNmmHy5MmoU6cOlixZ8kGDsWvWrKn4+u+//0ZGRgY6duyocszMmTMRFBSk+N7CwkKlRaNSpUoAgMTERABAjx49sH79eqSnp+PmzZs4evQoVqxYgczMTKSnpwPIGiuVkpICNzc3LFmyBBEREWjRogXGjRsHmUyGy5cv4927d2jXrh0yMjIU/7KvCjp79myev1ft2rXxyy+/qP1TbjV5//cHgHPnzqFs2bKoXbu24jYzMzPRtm1bREVF4fXr14iIiAAAtG/fXvFzhoaGcHNzyzNTTs6dO4eaNWuifPnyitszMDBAq1at8Ndff6kc+/5YGCsrK0W3WkEeu969eyM5ORnHjx8HABw/fhzJycno0aNHgfNevHgRRkZG6NSpk8r27BacixcvKrZVr14dRYoUKfC5c7s9JycnVKxYUe32nj17hrt37yq2derUCQYG/729ZN8X4eHhH5VBEx/7vKXPG7vViD5A7dq1MXfuXACATCaDiYkJrK2tVa6k0VSxYsUUX2cPvi1dunSeP1O0aFGV77OLsuyuk3fv3mH+/PnYv38/MjIyUKlSJTg5OcHIyEgxdsnJyQnr1q3D5s2bsWnTJqxbtw5lypTB6NGjMWjQIEWW7777LscM8fHx+f5edevWzfOYnH6XhIQEPHv2DLVr187x+GfPnimmTXj/fipfvny+t/e+hIQE3L9/P9fbUx4zY2ZmprLPwMBAcX8W5LGrWrUqXFxcEBoaih49eiA0NBTNmjXTKPfr169hYWEBQ0NDle1ly5YF8F+BDKg+tz7U69evc+wuLlOmDADgzZs3ahmyWVpaqh1T2D72eUufNxZHRB+goG/4ANQGfyoP3M1NiRIlAGSNg6levbpi+6NHjxAbG5vjuJSceHt74+jRo/D390ezZs0UBUj2eJ1sLVu2RMuWLZGSkoLz589jy5YtWLBgAerXr6/I4ufnBxsbG7XbyH5z1DZzc3PY2NjAz88vx/2VKlWChYUFgKzxMBUqVFDse/Xqldrx+T0O5ubmcHFxwdSpU3O8vYK2vBTksTM2Nkbv3r0xffp03LlzB+fOncv198xNyZIl8erVK2RmZqoUSNlv+tn3TUGkpKRg48aNaNy4MRo1agTgvwLb1NRUcXvPnj1T+9nsbcq3l12YvH9MdpGkC2I9b+nTwG41okJUvHhxPHnyRGVbTlcjva9evXowNjbG77//rrJ948aNmDx5slprQW4uXbqExo0bw9XVVVEYRUVF4eXLl4o3v59++gm9e/eGIAgwMzND27ZtMW3aNABZb+j169eHsbExnj59irp16yr+GRkZYenSpYqr7rTNxcUFjx8/hqWlpcrtnj17FkFBQTA0NESTJk0gk8lw5MgRlZ99/34ryOPg4uKCmJgYVKtWTeX29u/fj19++aXA93lBH7svv/wSZmZm8PLyQrFixeDq6lqg8yvnzcjIUPvdDxw4AAAFLqABwNjYGIGBgfjjjz8U27KvuMxuzXJ2dsbly5fx8OFDtdsrW7Ysqlatqth25swZlWN+/fVXyGQyuLi4FDhTQSh33b1PrOctfRrYckRUiNq2bYu1a9di7dq1qF+/Pk6ePFmgmY1Lly6Nb7/9Fps3b0aRIkXg4uKCK1euYMeOHZg6dWqebwrK6tWrh8OHD2PHjh2wtbXFzZs3sXr1ashkMkU3UZMmTbBp0yZ4eHigW7duSE9PR1BQEEqVKoUmTZqgVKlSGDFiBJYvX463b9+icePGePr0KZYvXw6ZTAYHB4ePuo9y06tXL/z8888YOnQoRo8eDWtra/z1119Yv349Bg4cCGNjY9jY2KBfv35YtmwZMjIyUKtWLRw4cACXL19WOVfbtm1x8uRJ+Pr6ol27doiIiEBoaKjKMUOGDMH+/fsxZMgQDBs2DBYWFggLC0NISAg8PT0LnLugj52ZmRm6dOmCXbt24ZtvvtF4TFCrVq3QuHFjzJw5E0+fPoWDgwMuXryI9evXo2fPnqhRo0aBz2VkZIQ2bdpg586dsLW1RcmSJbFs2TJUqlQJ9erVAwAMHToUBw4cwJAhQzBu3DiUKlUKoaGhOH/+PHx8fFSek9euXcOMGTPg5uaGa9euYcWKFejTp0+OLTgfo0SJEoiMjER4eLiixSubhYWFKM9b+jSwOCIqRKNGjcLLly+xYcMGpKeno02bNvD29saYMWPy/dkff/wRlpaW2LlzJ4KCglCpUiXMmjUL/fr1K/Dte3h4ID09Hf7+/khLS0OlSpUwZswY3L59GydPnkRmZiZat24NPz8/bNy4UTEIu2HDhtiyZQtKlSoFAJg4cSLKli2L7du3IygoCCVLlkTTpk0xefJkmJubf+jdk6eiRYti27ZtWLJkCRYvXozExERUrFgRU6ZMwbBhwxTHzZ49G2XKlMHWrVvx5s0btG7dGv3798e2bdsUx/Tu3RuxsbHYt28fdu7cCWdnZ6xYsQLffPON4pjy5ctj586dWLJkCby8vJCamgobGxt4e3ujT58+GmUv6GPXpk0b7Nq1C7169dL4/pHJZFi7di1WrFiBzZs34+XLl6hUqRImT578QXMZzZs3D76+vli4cCFSUlLQsGFDLFu2DMbGxgCyxhHt2LEDS5YswYIFC5Ceng4HBwcEBgaqDIgHgO+//x5RUVEYPXo0zM3NMWLEiEKZyXr06NEIDAzEyJEjERYWprZfjOctfRpkgsBV+4jo0xIQEICVK1fi33//FTtKnubMmYMrV66otWIRkbjYckREpGNbtmzB3bt3ERISgsWLF4sdh4jew+KIiEjHIiIi8Mcff2Dw4MEfNCcTERUudqsRERERKeGl/ERERERKWBwRERERKWFxRERERKSEA7I/wOXLlyEIgmL+DyIiIpK+9PR0yGQyODk55XkcW44+gCAI0PY4dkEQkJaWpvXzahMzao8+5GRG7dGHnMyoPfqQ83PNWND3b7YcfYDsFqOCLjxaEMnJybhx4wZq1Kihtjq5VDCj9uhDTmbUHn3IyYzaow85P9eM165dK9BxbDkiIiIiUsLiiIiIiEgJiyMiIiIiJSyOiIiIiJSwOCIiIiJSwqvViIiIPlGZmZlIT09X256amqr438BAmu0kmmY0NjaGoaGhVm6bxREREdEnRhAEPHnyBAkJCTnul8vlMDIywqNHjyRbHH1IxlKlSsHKygoymeyjbpvFERER0ScmuzAqV64cihYtqlYsZGZmIjU1FSYmJlprbdE2TTIKgoDk5GTEx8cDAKytrT/qtlkcERERfUIyMzMVhZGlpWWuxwCAqamppIsjoOAZzczMAADx8fEoV67cR/1e0mxLIyIiog+SPcZIqjNfF6bs3zmncVaaYHFERET0CfrYcTf6SFu/M4sjIiIiIiUsjoiIiIiUsDgiIiIiUsLiiIiIiEgJiyOJkMlkMDY2FjsGERGRxn766SfUq1cPiYmJKtsDAwPRsGFDpKSkiJTsw7A4KmRyuVCg48zMzFCrVu3P8uoCIiLSb3369EFqaiqOHDmisn3//v3o3LmzYg4ifcFJIAuZgYEMftsuIe5pYp7HVSpvDvcBDfGRUzMQERHpnK2tLZycnLB//3589dVXAIDIyEjcu3cPCxcuFDmd5lgc6UDc00Tcefha7BhERESFpnfv3pg1axYePnyIihUrYt++fahWrRqcnJzEjqYxdqsRERHRR8vuPtu/fz9SU1Nx+PBh9OrVS+xYH4QtR0RERPTRihUrhk6dOuHw4cOws7NDcnIyunfvLnasD8KWIyIiItKKPn36IDo6GsHBwWjWrBnKly8vdqQPwuKIiIiItKJhw4aoVq0aLl68qLddagCLIyIiItKiNm3aoGTJknB1dRU7ygdjcURERERaIQgCzpw5gx49eqBIkSJix/lgHJBNREREH+Xt27fYvHkzrl27hgcPHmDQoEFiR/ooLI6IiIjoo5iammLnzp2Qy+Xw8fFB5cqVxY70UVgcERER0UcxMjLCn3/+KXYMreGYIyIiIiIlLI6IiIiIlLA4IiIiIlLC4oiIiIhICYsjKjCZTAZjY2OxYxARERUqFkcEAJDLhXyPMTMzQ61atSGTyXSQiIiISBy8lJ8AAAYGMvhtu4S4p4m5HlOpvDncBzREeroOgxERUaEwMGD7SG5YHJFC3NNE3Hn4WuwYRERUSORyAQYGMhgaGsLMzEznt6v5z8kREBCAPXv2IDExEc7Ozpg9e3ahTzLJ4oiIiOgzUZBeAm3L7nX4EOvXr0dISAgWLlwIKysrLF68GCNGjMDBgwcLde02FkdERESfEX3pJUhLS8PPP/+MKVOmoE2bNgCAZcuWoWXLljh27Bjc3NwK7bbZ4UhERESSc/PmTSQlJaFJkyaKbSVKlECtWrUQHh5eqLfN4oiIiIgk5+nTpwAAKysrle3lypXDkydPCvW2WRwRERGR5KSkpACA2tgiExMTpKamFuptszgiIiIiyTE1NQWQNfZIWWpqaqFfacfiiIiIiCQnuzstPj5eZXt8fDzKly9fqLfN4oiIiIgkx8HBAcWLF1cZfP3mzRtcv34dzs7OhXrbvJSfiIiIJKdIkSL4+uuvsWTJElhaWqJixYpYvHgxrKys0LFjx0K9bRZHREREn5FK5c315vbGjBkDmUyGmTNn4t27d3B2dsaGDRsKfRF0FkdERESfCblc+ODZqj/2dj9k+RBDQ0NMmTIFU6dOLYRUueOYIyIios9EdoGSmZmJlJQUZGZm6vR29QWLIyIios+QXC4XO4JksTgiIiIiUsLiiIiIiEgJiyMiIiIiJaIXRxkZGVi+fDnatm0LJycnDBgwAH///bdi/40bNzBw4EA4OjqiXbt22LJli8rPy+VyrFixAi1btoSjoyNGjhyJBw8eqByT3zmIiIiIsoleHK1evRq7d+/G/PnzERoaimrVqmHEiBGIj4/Hq1evMHToUFSpUgV79uzB999/Dz8/P+zZs0fx84GBgdi+fTvmz5+PnTt3Qi6XY8SIEYq1WApyDiIiIqJsos9zdOLECbi5uaFFixYAAA8PD+zevRt///03YmJiYGxsjHnz5sHIyAi2tra4f/8+1q1bh969eyMtLQ0bN26Eu7s72rRpAwBYtmwZWrZsiWPHjsHNzQ0hISF5noOIiIhImegtR5aWlvj9998RFxeHzMxM7Nq1C0WKFIGDgwMiIiLg4uICI6P/argmTZrg3r17eP78OW7evImkpCQ0bdpUsb9EiRKoVauWYi2W/M5BREREpEz0lqMZM2ZgwoQJaN++PQwNDWFgYICAgABUqVIFT548gZ2dncrx5cqVAwA8fvwYT548AQBYW1urHZO9L79zlClT5oNyC4KA5OTkPI+RyWQwMzPT6LypqakQBOGDMn0oTXOKkbGgUlJSVP6XKn3IyYzaow85mVF7xM6ZmpoKuVyOzMzMXCd5FAQBBgYGEARBZxNBair7fSY747p163D27FkEBwfn+jOZmZmQy+VISUnJcR4nQRAgk+U/IaXoxdHt27dhbm6OVatWoXz58ti9ezfc3d3x888/4927dyhSpIjK8SYmJgCyHvzsJ15Ox7x+/RoA8j3Hh0pPT8eNGzfyPMbMzAy1atXS6LyPHj3S+QtK05xiZNTUvXv3xI5QIPqQkxm1Rx9yMqP2iJnTyMhI7T1OJpPBzNQEMgNDxTG6IsgzkfLuwz5Yp6amIiQkBCtWrICTkxPevXuX57EZGRm4e/durse8XxPkRNTi6PHjx5gyZQo2b96MRo0aAQDq1q2L27dvIyAgAKampoqB1dmyH+yiRYvC1NQUAJCWlqb4OvuY7JaQ/M7xoYyNjVGjRo08jylIdfq+ChUqFOiB0yZNc4qRsaBSUlJw79492NjYaNxqp0v6kJMZtUcfcjKj9oidMzU1FY8ePYKJiYnKeyMAyAwMER/qj7QXcTrLU8SyEsr1mKhomCgoQRAQFxcHHx8fXLx4ETY2NjAwMFD7nd5nZGSEKlWq5Hh7t2/fLtBti1ocXblyBenp6ahbt67K9vr16+PMmTOoUKEC4uPjVfZlf1++fHlkZGQotlWpUkXlGHt7ewCAlZVVnuf4UDKZ7KOKq9yYmJhI+kUP6EdGMzOzQnl8tE0fcjKj9uhDTmbUHrFyGhgYwMDAAIaGhjA0NFTbn/YiDmlPYnSeK6csecnMzMT169dRpEgRHDx4EKtWrcLDhw/zPE/28BwzM7Mci6iCNgaIOiDbysoKAPDvv/+qbI+OjoaNjQ2cnZ1x6dIllf7Q8+fPo1q1arC0tISDgwOKFy+OCxcuKPa/efMG169fh7OzMwDkew4iIiKSptatW2P58uWoXLmyTm9X1OKoXr16aNiwIaZNm4bz58/j3r178Pf3x7lz5/Ddd9+hd+/eePv2LWbMmIHbt29j79692Lx5M0aNGgUgq99w4MCB8PPzw2+//YabN29i0qRJsLKyQseOHQEg33MQERERKRO1W83AwACrV6+Gv78/PD098fr1a9jZ2WHz5s2oX78+ACAoKAje3t7o2bMnypYti6lTp6Jnz56Kc4wfPx4ZGRmYOXMm3r17B2dnZ2zYsAHGxsYAsqYKyO8cRERERNlEv1qtZMmSmDNnDubMmZPj/nr16mHXrl25/ryhoSF+/PFH/Pjjj7kek985iIiIiLKJPgkkERERkZSwOCIiIiJSInq3GhEREelOEctKn/TtaQOLIyIios+EIJejXI+JotyuzODjOqsWLlyopTT5Y7caERHRZyK7QMnMzERKSorO1lX72MJI1/QrLREREWlFTguzUhYWR0RERERKWBwRERERKWFxRERERKSExREREdEnSBAEsSPonLZ+ZxZHREREn5DstUWTk5NFTqJ72b9z9n3woTjPERER0SfE0NAQpUqVQnx8PACgaNGikMlkKsdkZmYiNTVVcbwUaZJREAQkJycjPj4epUqV+ujficURERHRJ8bKygoAFAXS++RyOTIyMmBkZAQDic5B9CEZS5UqpfjdPwaLIyIiok+MTCaDtbU1ypUrh/T0dLX9KSkpuHv3LqpUqQIzMzMREuZP04zGxsZaawVjcURERPSJMjQ0zLFgyJ4A0sTEBKamprqOVSBiZpRmWxoRERGRSFgcERERESlhcURERESkhMURERERkRIWR0RERERKWBwRERERKWFxRERERKSExRERERGREhZHREREREpYHBEREREpYXFEREREpITFEREREZESFkdERERESlgcERERESlhcURERESkhMURERERkRIWR0RERERKWBwRERERKWFxRERERKTE6EN/8PXr14iIiEB8fDy+/PJLJCQkoFq1apDJZNrMR0RERKRTH1QcrV69GmvXrsW7d+8gk8lQr149+Pv749WrV9i4cSNKlCih7ZxEREREOqFxt9rPP/+MgIAADB06FCEhIRAEAQAwcOBAPHjwAMuXL9d6SCIiIiJd0bg42rp1K7777jtMmDABtWvXVmxv3bo1Jk6ciJMnT2o1IBEREZEuaVwcPXr0CC4uLjnuq169Op4/f/7RoYiIiIjEonFxZG1tjcuXL+e4LyoqCtbW1h8dioiIiEgsGg/I7tOnDwICAmBqaoo2bdoAAJKTk3H06FGsXbsWQ4cO1XZGIiIiIp3RuDgaOXIk4uLi4OfnBz8/PwDAt99+C0EQ0K1bN4waNUrrIYmIiIh0RePiSCaTYd68eRg6dCguXLiAhIQEmJubw9nZGXZ2doWRkYiIiEhnPngSyGrVqqFatWoAgGfPniE+Ph6ZmZkwNDTUWjgiIiIiXdN4QPbbt2/h6emJbdu2AQAOHz6Mtm3bok+fPnBzc8Pjx4+1HpKIiIhIVzQujpYsWYKjR4+iZMmSAAA/Pz84ODhg5cqVMDIyUoxDIiIiItJHGner/fbbb/Dw8ICbmxuioqLw8OFDTJ06Fe3bt0dGRgbmzJlTGDmJiIiIdELjlqOEhARUr14dAHD69GkYGRmhefPmAICSJUsiNTVVuwmJiIiIdEjj4qhixYr4999/AQAnTpyAo6MjihcvDiCrWKpUqZJ2ExIRERHpkMbFUb9+/bBw4UJ07twZN27cQP/+/QEA48aNw+bNm9GvXz+thyQiIiLSFY3HHA0ePBiWlpYIDw/HuHHj0LlzZwCAsbExvLy80LdvX62HJCIiItKVD5rnyM3NDW5ubirbli1bppVARERERGL6oOLo6tWruHDhAtLS0iAIAgBAEAQkJyfj0qVLCAkJ0WpIIiIiIl3RuDjatm0bFixYoCiKlBkYGKBFixZaCUZEREQkBo0HZP/8889o1aoVLly4gGHDhuHrr7/G33//jeXLl8PExATdunUrjJxEREREOqFxcRQXF4f+/fujZMmSqFOnDi5dugRTU1N8+eWX+O6777Bly5bCyElERESkExoXR8bGxjA1NQUAVK1aFffv30d6ejoAoGHDhrh3755WAxIRERHpksbFUc2aNfH7778DAKpVqwa5XI4rV64AAJ48eaLddEREREQ6pvGA7KFDh2LcuHF48+YNfHx80L59e0ydOhUdO3bEwYMH0bBhw8LISURERKQTGrccubq6Ys2aNbC1tQUAzJs3DzY2Nti5cyeqV6+OWbNmaT0kERERka580DxHbdq0QZs2bQAAFhYW2LhxozYzEREREYnmg4ojuVyO27dv482bNznOd+Ts7PzRwYiIiIjEoHFxdO3aNYwZMwYvXrxQbBMEATKZTPH/jRs3tBqSiIiISFc0Lo68vb1RpEgRzJ8/H5UqVYKBgcbDloiIiIgkS+Pi6MaNG/Dz80OHDh0KIw8RERGRqDRu9ildujSMjY0LIwsRERGR6DQujgYMGIA1a9YgMTFRayFCQ0PRuXNn1K1bF126dMHhw4cV++Li4jBq1Cg0aNAALVq0gL+/PzIzM1V+ftu2bWjfvj3q1auH/v374/r16yr7C3IOIiIiIqCA3Wrffvut4mtBEHD16lW0atUKNWrUgJmZmcqxMpkMwcHBBQ6wf/9+zJgxA9OnT0fLli3x66+/YvLkybCyskKdOnUwfPhwxTxKsbGxmDFjBgwMDDB+/HgAwL59+7Bo0SLMnz8ftWrVwrp16zB06FAcPnwYpUuXRnp6er7nICIiIspWoOLo/cv1lWfBfn9fTpf253Xe5cuX49tvv8WAAQMAAGPGjEFERAQuXryIhw8f4tGjRwgJCUHJkiVhZ2eHFy9eYNGiRRg9ejSKFCmCNWvWYODAgejWrRsAwMfHB66urti9ezdGjRqFo0eP5nsOIiIiomwFKo62bt1aKDceExODhw8fomvXrirbN2zYAADw8vJC7dq1UbJkScW+Jk2a4O3bt7hx4wYqVaqEe/fuoWnTpor9RkZGaNSoEcLDwzFq1ChERETkeY769esXyu9GRERE+umDJoEMCwvD+fPnMW/ePABAZGQkfHx8MHbsWLRr167A54mJiQEAJCcnY/jw4bh+/ToqVaqEMWPGoF27dnjy5AmsrKxUfqZcuXIAgMePH8PIKCu+tbW12jE3b94EgHzP8aHFkSAISE5OzvMYmUym1u2Yn9TUVI1a37RB05xiZCyolJQUlf+lSh9yMqP26ENOZsyfTCYr0HFpaWkwNjbmffmRCiNj9nyM+dG4OAoNDYWHhwc6duyo2FaqVCmULVsW48aNw4oVK+Dq6lqgc719+xYAMG3aNIwbNw7u7u44evQoxo4di02bNuHdu3coUaKEys+YmJgAyHqDzr7D3u8aMzExQWpqKgDke44PlZ6enu9kl2ZmZqhVq5ZG53306JHOn6ya5hQjo6bu3bsndoQC0YeczKg9+pCTGXNmbGyMWrVqw8jIMN9jzczMULy4Oa5f/wfp6ek6SPfhPsfHuyDDaTQujjZs2IChQ4di2rRpim3Vq1fH6tWr8dNPPyEwMLDAxVH2lADDhw9Hz549AQA1a9bE9evXsWnTJpiamiItLU3lZ7ILmqJFi8LU1BQAcjwmuyUkv3N8KGNjY9SoUSPPYwr6KUNZhQoVdD4OStOcYmQsqJSUFNy7dw82NjYat9rpkj7kZEbt0YeczJg3mUwGIyND+G27hLineV+tXam8OdwHNESVKlX4t/IjFEbG27dvF+g4jYuj2NhYtG7dOsd9rVq1wo4dOwp8rvLlywMA7OzsVLbXqFEDp06dgouLC6Kjo1X2xcfHK342uzstPj4etra2Ksdkn9vKyirPc3womUz2UcVVbkxMTCT7RM2mDxnNzMwK5fHRNn3IyYzaow85mTFvcU8Tcefh6wIdy7+V2qHNjAVtDNB4nqOyZcvi6tWrOe67efMmLCwsCnyu2rVro1ixYrhy5YrK9ujoaFSpUgXOzs64fv26ovsNAM6fP49ixYrBwcEBlpaWqFatGi5cuKDYn5GRgYiICMXit/mdg4iIiEiZxsWRm5sbVq9ejZ9//hlPnz5Feno6nj59ip07dyIgIEBxSX1BmJqaYsSIEVi1ahUOHTqE2NhYrF69GmfPnsXQoUPh6uqKsmXLYuLEibh58yZOnDiBpUuXYtiwYYqmymHDhmHTpk3Yt28fbt++jenTp+Pdu3fo06cPABToHERERETZNO5W+/7773H37l0sWLAA3t7eiu2CIKBTp0744YcfNDrf2LFjYWZmhmXLluHp06ewtbVFQEAAGjduDAAICgrC3Llz8fXXX6NkyZLo378/xo4dq/j5r7/+GomJifD390dCQgLq1KmDTZs2oXTp0gCymjXzOwcRERFRNo2LIyMjI6xYsQK3bt3CpUuXkJCQAHNzczRs2PCDu6mGDh2KoUOH5rivatWq2LhxY54/P3z4cAwfPjzX/QU5BxERERHwAcVR165dMWXKFLRt2xZffPFFYWQiIiIiEo3GY44eP34s+dH3RERERB9K4+Koa9eu2Lx5s+JyeCIiIqJPicbdavfu3UNERARat26NUqVKqc09IJPJcOLECa0FJCIiItIljYsja2trtYViiYiIiD4VGhdHvr6+hZGDiIiISBI0HnNERERE9CnTuOXIwcEh37VJ8lutnoiIiEiqPmiG7PeLo6SkJERGRiI2Nhbu7u5aC0dERESkaxoXR3ktDzJ16lRERUWhd+/eHxWKiIiISCxaHXPUs2dPhIWFafOURERERDql1eIoNjYWGRkZ2jwlERERkU5p3K22cuVKtW1yuRxPnjxBWFgY2rZtq5VgRERERGLQSnEEAMWLF4erqys8PT0/OhQRERGRWDQujm7evFkYOYiIiIgkQaMxR8+fP8fVq1eRkJBQSHGIiIiIxFWglqO0tDR4enri8OHDEAQBANC5c2fMmTMHJUqUKNSARERERLpUoOJo5cqVCAsLQ69evVCnTh3cvXsXu3btAgAsWbKkUAMSERER6VKBiqMjR47g+++/x7hx4xTb7OzsMHfuXPj6+qJIkSKFFpCIiIhIlwo05ujJkydo3LixyrbWrVsjIyMDcXFxhRKMiIiISAwFKo7S0tJgYmKiss3S0hIA8O7dO+2nIiIiIhLJR8+QnT1Am4iIiOhT8NHFkUwm00YOIiIiIkko8CSQgYGBsLCwUNseEBCAUqVKKb6XyWTw8fHRSjgiIiIiXStQcVShQgVER0fnuP3ff/9V2caWJCIiItJnBSqOTp48Wdg5iIiIiCTho8ccEREREX1KWBwRERERKWFxRERERKSExRERERGRkgIVR3PmzEFsbCwA4NGjR0hPTy/UUERERERiKVBxtHfvXsTHxwMA2rdvjxs3bhRqKCIiIiKxFOhS/rJly8LPzw8tWrSAIAjYvXs3zpw5k+OxMpkM33//vVZDEhEREelKgYqjKVOmYP78+fj7778hk8mwe/fuXI9lcURERET6rEDFUZcuXdClSxcAgIODA0JCQlCvXr1CDUZEREQkBo2vVtuyZQtsbW0LIwsRERGR6Aq88Gw2FxcXxMTEYMWKFbh48SLevHkDCwsLNGrUCGPHjkWNGjUKIycRERGRTmhcHN2+fRv9+vWDoaEh2rVrhzJlyuDZs2f4/fffcerUKezevZstS0RERKS3NC6O/Pz8UKlSJWzduhXm5uaK7YmJiRg8eDCWLVuGlStXajUkERERka5oPOYoPDwco0ePVimMAMDc3BzfffcdwsPDtRaOiIiISNc0Lo6MjIxgYmKS474iRYogLS3to0MRERERiUXj4qhu3brYvn07BEFQ2S4IArZt24Y6depoLRwRERGRrmk85mjChAn45ptv0K1bN3Tq1Ally5bFs2fPcOTIEcTExGDTpk2FkZOIiIhIJzQujurWrYugoCAsWbIEK1euhCAIkMlkqFOnDtavXw9nZ+fCyElERESkExoXRwDQpEkT7N69GykpKXjz5g1KlCgBMzMzbWcjIiIi0rkPKo6ymZmZsSgiIiKiT4rGA7KJiIiIPmUsjoiIiIiUsDgiIiIiUqJxcXTo0CFO9EhERESfLI2Lo6lTp6J58+bw8vLC1atXCyMTERERkWg0Lo5OnjyJYcOG4fz58+jbty86d+6MDRs24NmzZ4WRj4iIiEinNC6OrKysMGbMGBw5cgTbtm1Do0aNsH79erRt2xajR4/GsWPHkJGRURhZiYiIiArdR81z1KBBAzRo0ABfffUVFi1ahFOnTuHUqVMoU6YMBg8ejGHDhsHQ0FBbWYmIiIgK3QcXRw8fPsT+/fuxf/9+xMbGokqVKpg8eTLatGmDU6dOYdWqVbh9+zZ++uknbeYlIiIiKlQaF0e7d+/G/v37ERkZCRMTE3Tq1Ane3t5o1KiR4hg7Ozu8evUKO3fuZHFEREREekXj4mjWrFmoX78+vLy80LlzZxQvXjzH4+zt7dG3b9+PDkhERESkSxoXR4cOHUKNGjWQmZmpGE/07t07pKenw9zcXHFcjx49tBaSiIiISFc0vlrNxsYGc+bMwddff63YFhkZiaZNm+Knn36CXC7XakAiIiIiXdK4OFqxYgUOHDgANzc3xbZatWrB3d0dISEhCAoK0mpAIiIiIl3SuFvt4MGDmDZtGvr166fYVqpUKQwZMgRGRkbYsmULvvvuO62GJCIiItIVjVuOXr16hcqVK+e4r3r16njy5MlHhyIiIiISi8bFUfXq1XH06NEc9508eRJVq1b96FBEREREYtG4W+3bb7+Fh4cHEhIS4OrqCktLS7x8+RK///47Dh8+DF9f38LISURERKQTGhdHPXr0QFJSEgIDA3Hs2DHFdgsLC8yaNYuX8BMREZFe07hbDQAGDBiAP//8E2FhYdi+fTsOHTqEs2fPon///h8VJiYmBk5OTti7d69i240bNzBw4EA4OjqiXbt22LJli8rPyOVyrFixAi1btoSjoyNGjhyJBw8eqByT3zmIiIiIsn1QcQQAMpkM1atXR4MGDVCjRg0YGHzwqQAA6enpcHd3R3JysmLbq1evMHToUFSpUgV79uzB999/Dz8/P+zZs0dxTGBgILZv34758+dj586dkMvlGDFiBNLS0gp8DiIiIqJsGnervXz5Et7e3jh16hRSUlIgCILKfplMhuvXr2scJCAgQG0pkpCQEBgbG2PevHkwMjKCra0t7t+/j3Xr1qF3795IS0vDxo0b4e7ujjZt2gAAli1bhpYtW+LYsWNwc3PL9xxEREREyjQujubNm4fff/8dXbp0gZWV1Ue3GAFAeHg4du3ahdDQUEWRAwARERFwcXGBkdF/MZs0aYK1a9fi+fPnePToEZKSktC0aVPF/hIlSqBWrVoIDw+Hm5tbvucoU6bMR+cnIiKiT4fGxdGZM2cwffp0rS0q++bNG0ydOhUzZ86EtbW1yr4nT57Azs5OZVu5cuUAAI8fP1bMqfT+z5UrV06xL79zsDgiIiIiZRoXR8bGxrlOAvkhvLy84OTkhK5du6rte/fuHYoUKaKyzcTEBACQmpqKlJQUAMjxmNevXxfoHB9KEASV8VE5kclkMDMz0+i8qampal2VhU3TnGJkLKjs50T2/1KlDzmZUXv0IScz5k1f/p4X1Of6eAuCAJlMlu9xGhdHHTp0wKFDh9CsWbMPCqYsNDQUEREROHjwYI77TU1NFQOrs2UXNEWLFoWpqSkAIC0tTfF19jHZT+L8zvGh0tPTcePGjTyPMTMzQ61atTQ676NHj3T+ZNU0pxgZNXXv3j2xIxSIPuRkRu3Rh5zMmDN9+Xuuqc/x8X6/wSQnGhdHtWrVgr+/Px48eID69eurFCVAVnX9/fffF+hce/bswYsXL1TGGQHAnDlzEBYWBisrK8THx6vsy/6+fPnyyMjIUGyrUqWKyjH29vYAkO85PpSxsTFq1KiR5zEFqU7fV6FChQI9cNqkaU4xMhZUSkoK7t27BxsbG40/5emSPuRkRu3Rh5zMmDd9+XteUJ/r43379u0CHfdBA7KBrEHU4eHhavs1KY78/Pzw7t07lW0dO3bE+PHj0a1bN+zfvx87d+5EZmYmDA0NAQDnz59HtWrVYGlpCXNzcxQvXhwXLlxQFEdv3rzB9evXMXDgQACAs7Nznuf4UDKZ7KNannJjYmIi2SdqNn3IaGZmViiPj7bpQ05m1B59yMmM2sO/ldqhzYwFLXI1Lo5u3rypcZjc5NZyY2lpifLly6N3794ICgrCjBkzMGLECFy9ehWbN2/G3LlzAWQ1jQ0cOBB+fn4oXbo0KlasiMWLF8PKygodO3YEgHzPQURERKRM4+JIWWJiIuLj41G5cmUYGhoqWma0xdLSEkFBQfD29kbPnj1RtmxZTJ06FT179lQcM378eGRkZGDmzJl49+4dnJ2dsWHDBhgbGxf4HERERETZPqg4unDhAvz8/BAVFQWZTIbdu3dj/fr1sLKygoeHx0cF+vfff1W+r1evHnbt2pXr8YaGhvjxxx/x448/5npMfucgIiIiyqbxDI7nzp3D8OHDYWpqCnd3d8Vlig4ODtiyZQs2bdqk9ZBEREREuqJxceTv74/27dtj69atGDx4sKI4Gj16NEaMGIHdu3drPSQRERGRrmhcHN24cUOxJtn7o76bN2+Ohw8faicZERERkQg0Lo7Mzc3x7NmzHPc9fvwY5ubmHx2KiIiISCwaF0ft27fHsmXLcO3aNcU2mUyGJ0+eYM2aNWoTOhIRERHpE42vVpsyZQquXLmCr7/+WrFo6+TJk/HkyRNYW1tj8uTJWg9JREREpCsaF0clS5bE7t27ERoaivPnzyMhIQHm5uYYNGgQevXqJfnZQImISJ1MJlPMD0f0ufugeY6KFCmCr7/+Gl9//bW28xARkZbJ5QIMDPJeNiFrYdXaSE9Py/M4os+BxsVRaGhovsf06NHjA6IQEVFhMDCQwW/bJcQ9Tcz1mErlzeE+oCHS03UYjEiiNC6OcpsBWyaTKZYQYXFERCQtcU8Tcefha7FjEOkFjYuj3377TW1bcnIyIiIisH79eqxatUorwYiIiIjEoHFxVLFixRy3f/HFF0hPT8f8+fOxffv2jw5GREREJAaN5znKi729Pf755x9tnpKIiIhIp7RWHKWlpeGXX36BpaWltk5JREREpHMad6u1a9dObU01uVyOV69eITU1FdOmTdNaOCIiIiJd07g4cnFxUSuOAKB48eJo27YtmjVrppVgRERERGLQuDhauHBhYeQgIiIikgSNi6NHjx5pdHyFChU0vQkiIiIi0WhlzFFebty4oelNEBEREYlG4+LI398fc+bMQe3atdGtWzeUL18er169wsmTJ3H48GGMGTMm17mQiIiIiKRO4+Jo//79aNu2rdrYo86dO8PS0hKRkZEYN26c1gISERER6ZLG8xydO3cObm5uOe5r1aoVLl269NGhiIiIiMSicXFkYWGBK1eu5Ljv3LlzKF++/EeHIiIiIhKLxt1qffr0werVq5GSkoJ27dqhdOnSeP78OY4cOYIdO3Zg1qxZhZGTiIiISCc0Lo7Gjh2LxMREbN68GRs2bAAACIIAMzMzTJo0Cf369dN6SCIiIiJd0bg4kslk8PDwwNixY/H333/j9evXsLCwgKOjI4oXL14YGYmIiIh0RuPiKFvx4sVRrlw5AICjoyMyMjK0FoqIiIhILB9UHO3fvx9LlizBs2fPIJPJsHv3bgQEBMDY2BhLlixBkSJFtJ2TiIiISCc0vlotLCwM06ZNQ5MmTbB06VLI5XIAQIcOHXD69GkEBgZqPSQRERGRrmjccrRmzRr069cPXl5eyMzMVGzv3bs3Xr58iZCQEEycOFGbGYmIiIh0RuOWo5iYGHTo0CHHffXr18fTp08/OhQRERGRWDQujiwtLXHnzp0c9925cweWlpYfHYqIiIhILBoXR507d8aKFStw5MgRpKWlAci6vD8qKgqBgYHo1KmT1kMSERER6YrGY44mTpyI6OhoTJw4EQYGWbXVoEGDkJycjEaNGmHChAlaD0lERESkKxoXR0WKFEFQUBDOnj2L8+fPIyEhAebm5nBxcUHr1q0hk8kKIycRERGRTmhcHA0fPhwjRoxA8+bN0bx588LIRERERCQajcccRUZGsnWIiIiIPlkaF0ctW7bEgQMHkJ6eXhh5iIiIiESlcbeaiYkJDhw4gMOHD8PW1hZFixZV2S+TyRAcHKy1gERERES6pHFx9OTJEzg5OSm+FwRBZf/73xMRERHpE42Lo61btxZGDiIiIiJJKNCYo2PHjuHNmzeFnYWIiIhIdAUqjiZMmIB79+6pbFu/fj1evHhRGJmIiIiIRFOg4uj9cUSZmZlYunQpnjx5UiihiIiIiMSi8aX82TjwmoiIiD5FH1wcEREREX2KWBwRERERKfmo4ojLiBB9umQyGYyNjcWOQUSkcwWe5+j7779HkSJFVLaNHj1a7Y+nTCbDiRMntJOOiAqFXC7AwCDvDzdmZmaoVas20tPTdJSKiEgaClQc9ezZs7BzEJEOGRjI4LftEuKeJuZ6TKXy5nAf0BBcRpGIPjcFKo58fX0LOwcR6Vjc00Tcefha7BhERJLDAdlERERESlgcERERESlhcURERESkhMURERERkRIWR0RERERKWBwRERERKWFxRERERKSExRERERGREhZHREREREpYHBEREREpYXFEREREpITFEREREZESFkdERERESlgcERERESlhcURERESkRPTiKCEhAbNnz0arVq3QoEEDfPPNN4iIiFDsP3fuHHr16oX69eujU6dO+PXXX1V+PjU1FXPnzkXTpk3h5OSEKVOm4OXLlyrH5HcOIiIiomyiF0eTJ0/G5cuXsXTpUuzZswc1a9bE8OHDcffuXdy5cwejRo1Cy5YtsXfvXnz11VeYOnUqzp07p/h5Ly8v/PnnnwgICEBwcDDu3r2L8ePHK/YX5BxERERE2YzEvPH79+/j7Nmz2L59Oxo2bAgAmDVrFv744w8cPHgQL168gL29PSZNmgQAsLW1xfXr1xEUFISmTZvi6dOnCA0NxZo1a9CoUSMAwNKlS9GpUydcvnwZTk5OCA4OzvMcRERERMpEbTmysLDAunXrULduXcU2mUwGmUyGN2/eICIiQq2AadKkCS5dugRBEHDp0iXFtmzVqlVD+fLlER4eDgD5noOIiIhImagtRyVKlEDr1q1Vth09ehT379/H9OnTsW/fPlhZWansL1euHFJSUvDq1Ss8ffoUFhYWMDExUTvmyZMnAIAnT57keY7SpUt/UHZBEJCcnJznMTKZDGZmZhqdNzU1VedFm6Y5xchYUCkpKSr/S5WYOfl46x4fb+3Qp/sR4H35sQojoyAIkMlk+R4nanH0vsjISHh6eqJjx45o06YN3r17hyJFiqgck/19WloaUlJS1PYDgImJCVJTUwEg33N8qPT0dNy4cSPPY8zMzFCrVi2Nzvvo0SOdP1k1zSlGRk3du3dP7AgFIkZOPt7i4eOtHfpwPwK8L7VF2xlzqhveJ5ni6MSJE3B3d0eDBg3g5+cHIKvIeb+Ayf7ezMwMpqamORY4qampigo/v3N8KGNjY9SoUSPPYwpSnb6vQoUKBXrgtEnTnGJkLKiUlBTcu3cPNjY2H/X4FjYxc/Lx1j0+3tqhT/cjwPvyYxVGxtu3bxfoOEkURz///DO8vb3RqVMn/PTTT4onk7W1NeLj41WOjY+PR9GiRWFubg4rKyskJCQgLS1N5QkYHx+P8uXLF+gcH0omk6Fo0aIf/PO5MTExkewTNZs+ZDQzMyuUx0fb9CEnH2/t0YecfLy1h/eldmgzY0GLXNEv5d++fTvmz5+PAQMGYOnSpSpFTqNGjXDx4kWV48+fP48GDRrAwMAADRs2hFwuVwzMBoCYmBg8ffoUzs7OBToHERERkTJRq4OYmBj4+PigQ4cOGDVqFJ4/f45nz57h2bNnSExMxKBBg3D16lX4+fnhzp072LhxI44cOYIRI0YAAMqXL48uXbpg5syZuHDhAq5evYrJkyfDxcUFjo6OAJDvOYiIiIiUidqtdvToUaSnp+P48eM4fvy4yr6ePXti4cKFCAwMxOLFixEcHIxKlSph8eLFKpfmz58/Hz4+Phg3bhwAoFWrVpg5c6Zi/xdffJHvOYiIiIiyiVocjR49GqNHj87zmFatWqFVq1a57i9atCgWLFiABQsWfPA5iIiIiLJx0A0RERGREhZHREREREpYHBEREREpYXFEREREpITFEREREZESFkdERERESlgcERERESlhcURERESkhMURERERkRIWR0RERERKWBwRERERKWFxRERERKSExRERERGREhZHREREREpYHBEREREpYXFEREREpITFEREREZESFkcSI5PJxI5ARET0WWNxJBGlzE0gyOUwNTXN91hBLtdBIv0kk8lgbGwsdgwiItJjRmIHoCzFzYwhMzBAfKg/0l7E5XpcEctKKNdjou6CSYhcLsDAIO+WNTMzM9SqVRvp6Wk6SkVERJ8aFkcSk/YiDmlPYsSOIUkGBjL4bbuEuKeJuR5Tqbw53Ac0RHq6DoORaNhSSESFgcUR6ZW4p4m48/C12DFIBz6llkIWcUT6hcUREUmSPrQUFqSAA/SniCOiLCyOiEiypN5SWJACDhC/iCMizbA4IiL6CFIv4IhIc7yUn4iIiEgJiyMiIiIiJSyOiIiIiJSwOCIiIiJSwuKIiIiISAmLIyIiIiIlLI6IiIiIlLA4IiIiIlLC4ohIBFxri4hIulgcEWmRXC4U6LjstbZksvzX5SIiIt3i8iFEWsS1toiI9B+LIyIt41pbRCR17NrPG7vViIiIPiEF6d5n137e2HJERET0CSlI9z679vPG4oiIiOgTw+79j8NuNSIiIiIlLI6IiIiIlLA4IiIiKgQc7Ky/WBwRERFpUSlzEwhyOUxNTfM9VpDLdZCINMUB2URERFpU3MwYMgMDxIf6I+1FXK7HFbGshHI9JuouGBUYiyPSGJuKiYjyl/YiDmlPYsSOQR+A3WpUYGwqJiKizwFbjqjA2FRMRGLikhekKyyOSGNsKiYibZPLBRgY5N1ln73kRXp6mo5S0eeKxREREYmOS16QlLA4IiIiSeCSFyQVHJBNREREpITFEREREZESFkdEpPc49xYRaROLIyLSW5rMvQVw/i0iKhgOyCYivVXQubcAzr9FRAXH4oiI9B7n3iIibWK3GhHlieN5Pi98vIlYHBFRLriW3ueFjzfRf9itRkQ54lp6nxd9erzZuvV5EHMtPRZHRJQnjuf5vEj58f6QqxNlBuwgkSKpr6XH4oiIiPQCr078dEh9LT0WR0REpFek3LpFBSfltfTY3khERESkhMUREZGOcCAxSQ2fkzljcUSfJL7gSUp4mTxJDZ+TeftsxhzJ5XKsXLkSu3fvRmJiIpydnTF79mxUrlxZ7GikRfp2NQuLuM+DPl0mT58HPifz9tkUR4GBgdi+fTsWLlwIKysrLF68GCNGjMDBgwdRpEgRseORlujL1Syafmrj5cifBg4kJqnhczJnn0VxlJaWho0bN8Ld3R1t2rQBACxbtgwtW7bEsWPH4ObmJm5A0jqpv+D5qY2IqGDEaGH/LIqjmzdvIikpCU2bNlVsK1GiBGrVqoXw8HAWRyQaqRdxRERiEXOYhEwQBEErZ5KwY8eO4YcffsCVK1dU7uQJEybg3bt3WLt2rUbni4yMhCAIBZrWXCaT4fXbNGRk5j2gzcTYEMWLGiMz+TWQmZn7gYaGMCxaEtp+2AqS85PKWEg5+XhLNGMh5eTjLdGMhZSTj7c4GeXvkiDI8368ZQaGMDAtlm/O9PR0yGQyNGjQIM/jPouWo5SUFABQG1tkYmKC1681n4Aqu4mvoE19JYsXfEyTYdGSGmXQpoLm/JQyAtrPycdbe/h4aw8fb+3g4609Bc1oYFqswOfML6dMJivQ7/JZFEfZrUVpaWkqLUepqakwMzPT+HxOTk5ay0ZERETS8llcAmNtbQ0AiI+PV9keHx+P8uXLixGJiIiIJOqzKI4cHBxQvHhxXLhwQbHtzZs3uH79OpydnUVMRkRERFLzWXSrFSlSBAMHDoSfnx9Kly6NihUrYvHixbCyskLHjh3FjkdEREQS8lkURwAwfvx4ZGRkYObMmXj37h2cnZ2xYcOGAl1xRkRERJ+Pz+JSfiIiIqKC+izGHBEREREVFIsjIiIiIiUsjoiIiIiUsDgiIiIiUsLiiIiIiEgJiyMiIiIiJSyOiIiIiJSwOCIiIiJSwuKI8tSnTx/cvHlT7Bh52rBhA54+fSp2jE+Cp6cn3r59q7Y9ISEBY8eOFSFRlkePHhX4HxXco0ePFI/3+fPnMW/ePBw6dEjkVKq+/fZbvHnzRm37ixcv0KNHD90H0jP6+tp5/vw5Hj9+LFrGz2b5EH2RmpqKw4cPS+ZF/+DBAxQtWlTsGHlavXo1XF1dxY6RI09PzwIf6+vrW4hJcnfp0iU8ePAAABAaGoratWujePHiKsfcuXMH586dEyMeAKBdu3aQyWQFOvbGjRuFnCZn4eHhBT5WCgteHz9+HJMmTcLatWtRuXJljBgxApUrV8bevXvx+vVrDBgwQLRsp0+fxrVr1wBk3a9r1qxR+zt0//59PHz4UIx4auRyOQ4ePIjIyEikp6fj/YUnxHptA/rx2lEWGRkJT09PxMbGqmwXBAEymUxnGVkcSUxiYiI8PDwkUxyNGDECM2bMwPDhw1GlShWYmpqq7K9QoYJIyf5Tv359nDx5EkOHDhU7ipq4uDjF14IgICIiAmXKlEGtWrVgZGSEmzdv4unTp2jfvr1oGWUyGTw8PBRfL1iwQO2YokWLYvjw4bqOprBlyxbF1zdv3sSqVaswduxYODk5wdjYGNeuXcPKlStFbd0aNGgQZDKZ4o94tuw3SuVtUngTCgwMxPDhw9G0aVOsXr0aFSpUwK+//oojR44gICBA1OKoYsWKmDdvnuK+CwsLg4HBfx0dMpkMRYsWxdSpU8WKqMLHxwfbtm2Dg4OD2gcLsenDa0fZggULULZsWUydOhXm5uai5eDaahIjl8vx+PFjVKxYUewoAIDatWsjMzMTANT+4Ouyis/LhAkTcOzYMZQoUQI2NjYwMTFR2a/8x0FMfn5+ePz4MXx9fVGkSBEAQGZmJmbPnp1rUaJrDg4O+PPPP1GmTBmxo+SqR48e+P7779GhQweV7b///jsWLVqEw4cPi5JLuRXj3LlzCAwMxPTp09GgQQMYGRnh2rVr8PHxwciRIyXx4adevXo4fPgwKlasiP79+6N27dqYMWMGHj16hE6dOuHq1atiRwSQ1fLxyy+/oHTp0mJHyVXjxo3h4eGBnj17ih0lT1J97SirW7cuQkNDYWtrK2oOthxJjIGBgWQKIwDYtGmT2BHyVbRoUUm82eRn165d2Llzp6IwAgBDQ0MMHz4cffr0kURxJPXxZQAQExODGjVqqG2vUqUKHj9+LEKiLMqv2/Xr18Pb2xtNmzZVbGvevDnmzJkjmZbhEiVKIDExEYmJibh69SpGjhwJAIiNjUWpUqXEDafk5MmTYkfIV1pamiS6SvMj1deOMmtrayQlJYkdg8WRmCIiInLtox43bpxIqVS5uLiIHSFfYvbna8LY2BiPHj1S+0R0584dyYzrSk5OxubNm3N9XkqhFc7e3h5btmxRtLgBQEZGBtauXYu6deuKnC5LfHw8ypUrp7a9RIkSSEhI0H2gHLRu3RqzZ89GsWLFYG5ujubNm+Ovv/6Cl5cX2rRpI3Y8hWfPnsHf3z/X5+Rvv/0mUrL/tGzZEqdPnxa1K7Ig9OG1M2bMGPj4+GDu3LmoXr06jI2NRcnB4kgkq1atQkBAAEqUKKHWRy2TySRTHKWmpmLXrl2Ijo5WdK8BWZ+UoqKicPToURHTZclvIKxUPtG5ublhxowZmDhxIurUqQO5XI7IyEgEBASgf//+YscDAMyePRu//fYbmjdvjrJly4odJ0dTp07F8OHD8ccff6BWrVqQy+WIiopCSkoKgoODxY4HIKvLavny5fD19UWxYsUAZF3xt3jxYsl84Jg1axb8/f3x4MEDrF69GkWKFMGlS5fg6OiIadOmiR1PYdasWYiKikKXLl1EHYOSF0dHRyxevBjnzp2Dra2t2hu6VP6e68NrZ/Xq1Xj06FGurau6GsrBMUciadGiBQYNGoRRo0aJHSVPs2bNQmhoKGrVqoVr167ByckJ9+/fx4sXLzBkyBBJ/BF1cHBQDITNJpPJIJPJYGBggKioKBHT/SctLQ0LFizAvn37kJGRAUEQYGJigoEDB2LKlCkqA07F0rBhQ/j5+aFt27ZiR8nTgwcPEBISglu3bgEAatasiW+++SbH1hox3Lp1C0OGDEFKSgpsbGwgCALu3bsHS0tLBAcHS6rrXOocHR0RFBSERo0aiR0lV+3atct1n0wmk0TrVjapv3b27duX535djeticSSS+vXrIywsTPJ/JJs1a4bp06fDzc0NHTp0UFz2O2nSJFhZWWHmzJliR1S7nDczMxMxMTFYvnw53N3d0axZM5GS5SwpKQkxMTGQyWSoVq2aZLrUgKxWtj179qBKlSpiRymQtLQ0GBsbF/hSZV16+/YtDh06hFu3bkEmk8HBwQFdunSBmZmZ2NEUbt68ieDgYMXr5cSJE/jiiy8k07oFZP0N2rZtG6pVqyZ2lE+KVF87Bw8eRJs2bURvJRT/o+pnqkGDBrh8+bLYMfL15s0bNGjQAABQo0YNXL9+HcbGxhg1ahR+//13kdNlqVixosq/KlWqoHXr1pgxY4bo45HCw8ORkZGh+Do8PBzXr19HSkoKkpOT8c8//yi2S0HHjh2xd+9esWPka8eOHWjfvj0cHR0RFxcHLy8vBAYGih1LRfHixdGrVy8MGDAA06ZNQ/fu3SVVGEVFReGrr75CXFwcoqKikJaWhhs3bmDYsGE4ffq02PEUunfvjqCgIJVufX2RlpaGS5cuiR1DhdRfOz4+PmjatCmGDBmCrVu3ijY5JcccicTNzQ3z589HVFQUqlevrnIFEwBJXM0CAKVLl8aLFy9QoUIF2NjYIDo6GgBgYWGB58+fi5wubxYWFrh//76oGQYNGoSzZ8/C0tJSZR6c90llWoTSpUtj48aNOHPmDKpVq6b2vBS72ASyPlkuWbIEgwcPRlBQEACgevXq8PPzg6mpKYYNGyZywqypLpYsWYKtW7ciPT0dR48exbJly2BmZgYvLy/RBpkq8/Pzw7BhwzBp0iQ4OTkByJpjplixYggICEDr1q1FTpglISEBhw4dwqlTp1C5cmW156QULhKIiorCrFmzEB0dDblcrrZfCq9tQD9eO3/99ReuXLmC06dPY9++ffDx8YG9vT3at2+P9u3bo1atWjrJweJIJDNmzAAAbN68WW2fTCaTTHHUqlUrzJ07F76+vmjYsCF8fHzQoUMHhIWFwcrKSux4AHIekP327VsEBwfjiy++ECHRf3777TfF/CxSGneQm7///hv169cHkHXFlRRt3LgRM2bMQM+ePbFx40YAWUtMFC1aFOvXr5fEH/itW7di//79mDNnDubNmwcAcHV1xdy5c1GmTBlMmjRJ5IRZb+hz5sxR2z5gwACEhISIkCh3bm5uYkfIk6+vLwwNDTFz5kz4+vrCw8MDsbGx2LZtGxYtWiR2PAV9eO3IZDI4OjrC0dEREyZMwKNHjxAQEIDVq1cjMDCQM2R/6vRhPhkg6+oGDw8PXLx4Ef3798euXbvw1VdfwcjICD/99JPY8QAg1xaZihUrYvHixSKl+i9DTl+/LzU1VRdx8rV161axI+QrJiYmx8G5jRs3VhQiYtu1axdmz56NDh06YP78+QCAzp07w9jYGL6+vpIojoyNjXNcR+/x48eS6v6TQmtlfq5fv47g4GDUq1cPe/fuhZ2dHfr37w8rKyuEhITgf//7n9gRAejHa0cQBPzzzz+4cOECzp8/j0uXLiEjIwPOzs46HT/K4ojyVKJECZX+6HXr1uHGjRsoU6aMZK5uyKlFxtjYWDL5sr169Qpr1qxRmRZBEASkp6fj9u3biIiIEDlhlnfv3uHIkSO4e/cuhg0bhujoaHzxxRewsLAQOxoAoEyZMoiJiUHlypVVtl++fFkyj3lcXBxq1qyptt3BwQHPnj0TIZE6V1dX+Pv7Y9myZYptd+7cgbe3t6TmOQKyWjFDQkIQExOD6dOnIzw8HHZ2dqhevbrY0QBkrWyQPfVF1apVER0djUaNGqF9+/ZYu3atyOn+ow+vHWdnZyQnJ8PR0RGNGjXC0KFD0bBhQ7WVDwobB2TrUM2aNfHixQsAWX8ka9asmes/MeW1avPjx49RqlQpZGRkSGYV5+yB2GXLlkVqairKly8vmTdyZXPnzkVoaCgsLCwQERGB8uXLIykpCX///Te+++47seMByFoJu0uXLvDy8kJQUBASExOxceNGdO3aFXfu3BE7HgCgb9++mDdvnqIovnv3Lnbs2AFvb2/06tVL5HRZKlasqFg4VdmZM2fU3pjEMm3aNCQlJaFJkyZISUlBr1690KVLFxgaGkpmzTIga4HZrl27Yt++fTh69CiSk5MRFhaG3r1748qVK2LHA5BVEGUPvK5evbrisU9MTERaWpqY0VTow2uncePGKFasGO7du4eHDx/i4cOHooxv5aX8OrRv3z506dIFRYoUwd69e/O8hFLMNXqy5w3Ki5TWVtOHwa9A1ov+p59+Qps2bdClSxcsWbIEDg4OmDVrFlJTUyUxNsHd3R1v377FsmXL0KxZMxw4cAAlSpTAxIkTYWJigjVr1ogdEQCwdOlSBAcHK7ojjYyM0K9fP0yfPl0S80Xt2bMHixcvxtixY7F06VJMnz4dsbGx2Lp1Kzw8PPDNN9+IHVHh3LlzuH79OuRyOezs7NCyZUtJ3IfZxowZg9KlS2PBggVo0KABDhw4AGtra0ybNg3x8fGS6ArevXs3FixYAG9vb9SsWRPdu3fHV199hcjISJQpUwYbNmwQO6KC1F87QFZL3NWrV3H27FmcO3cOV69eRbly5dC0aVNFN3WhE4jec/78eeHChQsF+icFwcHBQosWLYQ9e/YI9evXF2JjY4Vff/1VcHFxEZYuXSp2PIXatWsLjx49EgRBEMaNGyfs27dPEARBuHnzptCqVSsRk/2nefPmwj///CMIgiA4OjoKsbGxgiAIwo0bNwRnZ2cxoymEh4cLaWlpQnJysnD16lXhypUrQmJiotix1OzcuVNo3bq1YG9vL9jb2wtNmzYVNm7cKHYsFfv27RPCwsIU348fP144cOCAiInUubi4CLdu3RIEQfU5efv2baFBgwZiRlNx/PhxITw8XBAEQThw4IDQtWtX4bvvvhMePHggcrL/ZGZmCoIgSP61ky01NVU4c+aMMGfOHKFu3bpC7dq1dXbbHHMkkrS0NOzevRvR0dFqza4ymQw+Pj4iJctq4dAn+jD4FQDKly+Phw8fwtraGjY2Nvj3338BAGZmZnj9+rXI6bIkJSXlOill9nxNYvvhhx8QFBSE2rVrS2Y9qPe9efMGffv2Rd++ffHy5UsIggBLS0uxY6nYsmUL/Pz8MGvWLMU2KysrzJo1CykpKfj6669FTPcfuVye4+XxSUlJMDQ0FCFRzlxdXRVfd+3aFV27dhUxTc5atWqFnj17omfPnpJ97dy4cQNnz57F2bNnERkZiSJFiqBFixZYsGCBTqeXYHEkkmnTpuHEiROoWbOmzgea5cfT07PAx0rhShJ9GPwKZE2w6OnpiYULF6JZs2aYNGkS6tevjxMnTqBq1apixwOQNRhyx44dKs+B9PR0rF69WjEZqNhKly6NxMREsWPkqUWLFnB1dUXPnj3RokULyc1CDGRdmbhw4UJ07txZsc3T0xN16tTBqlWrJFMctWjRAmvXrlW58jR7nbomTZqIlsvT0xMzZsxA8eLF8/2bKYW/k0DWGm+hoaFYv3496tevrxhn9v76nmLq2bMnKlasiLZt22LkyJFwcXGBkZHuSxUWRyI5c+YMli5dig4dOogdRU1cXJzYETSSPfi1UqVKKtulNPgVACZNmqQYyN61a1d07NgREydOhLm5OVasWCF2PABZRfuAAQNw8eJFpKenw8vLC3fv3kViYiJ+/vlnseMByPr0O2rUKLRu3RpVq1ZV+3AhhUU+V61ahdDQUPzwww8oUaIEunfvjl69eklqCYz4+HjUqVNHbbujo6NkLrYAAA8PD3z77bdo0aIFUlNTMWbMGDx8+BClSpXCwoULRcsVFxenaNHSl7+Z/fr1Q79+/RATE4PQ0FCsXbsWvr6+aN++PXr37i2JpZYOHDgAOzs7sWNwQLZY2rZti/Xr16NGjRpiR9F7+jT49X0JCQkoXry4KJ+MchMfH4/t27fjxo0bkMvl+OKLL9C/f3+14lMs+rTI59u3b3H48GEcOHAAkZGRqFu3Lnr37o3//e9/on9a7969O3r27IkhQ4aobP/555+xfft2hIWFiRMsBykpKTh06JDKc7J79+6i34d5SUtLU5vNW2rS09OxadMmBAYGIjU1FdbW1hg0aBC+/fZbUbssf/vtN6xduxbR0dEwMjJCjRo1MHz4cJ02JrA4EsmuXbtw7NgxeHl5Sap1IydJSUk4cOCA4on6xRdfoHPnzpL6w7Rr1y6sXr0aT548AZDV9TJy5EgMHTpU5GSqbt26hVu3buV4ea9UZkUn7Xv58iVCQkKwZs0avHv3DmZmZujduzcmTpwo2uvowIED8PDwQJcuXRSzol+7dg2//vor5s+fL+oVs/omNTUVXl5esLGxwahRowBkFfHNmzfHrFmzJFckXblyBaGhoQgLC0NaWhpcXV3Rq1cvPH78GAEBAXBycsLSpUtFyXbs2DFMmDAB7du3h7OzMwRBQHh4OH7//XcEBASgffv2OsnB4kgkly9fxujRo/HmzZsc90vhEnkga86jgQMH4sWLF6hWrRrkcjnu378PS0tLbN++XTJLiGST6uBXAFizZg38/f1z3CeVaRFevnyJ9evX51rAibWO1aNHj2BtbQ2ZTJZvl0+FChV0lCpvaWlpOHHiBEJDQ/HXX3+hbNmyiu61x48fw9fXV7GWnVjCwsKwZcsW/PvvvzA2NoatrS2+++47tG3bVrRMQNaSFgUlhbXVvLy8cPbsWXh7e8PFxQUAcPz4cSxevBjt27fHtGnTRE6YJTAwEPv370dsbCzq1KmD3r17w83NTaVAP3jwIGbPni3awug9evSAq6urWvf4ypUrcfr0aezevVsnOVgciaRz584wNzdHt27dcrw6SCqf2saPH4/nz59jxYoVKFOmDICsiQInTpyI8uXLY8mSJSInzPLw4UNcuXJF0i0yzZo1Q79+/TBq1CjJDcLPNmLECFy7dg3NmjWDqamp2n6xBpbWrFkTf/75JywtLXOdh0uQ0NxbM2bMwNGjR5GamqoYz/H+wOzDhw9j+vTpor0JSZnyAOfU1FSEhYWhZs2acHR0hJGREaKionD16lV89dVX8PLyEi/o/2vRooWixUVZeHg4pkyZgjNnzoiUTFWzZs3QrVs39O7dO9d1J69fv46///4b/fv313G6LPXq1cPBgwfVLlK5d+8eunfvrrOJP6Uz0OEzExcXhwMHDsDGxkbsKHn666+/sHHjRkVhBGRNQT916lSMHDlSxGT/CQkJwdy5cxVLciiT0iK+6enp6N69u2QLIwC4dOkS1q5dq/j0KxXBwcEoWbIkAGm0FOTn+vXrmDBhArp27YpSpUrleIy9vb3Ouy5CQ0PRuXNnFClSBKGhoXkeK+brRrkI9/T0xJAhQ+Dh4aFyjL+/v2RmbU9KSkKJEiXUtpcuXVoy03QAWRep5De+sVatWqhVq5aOEqkrV64c7t+/r1Yc3b9/H+bm5jrLweJIJHXr1sX9+/clXxwZGhrmuAiliYmJZKbFX7NmDfr164dJkyZJahzU+7p3746QkBD8+OOPYkfJVfny5VGsWDGxY6hRLtYuXryI4cOHqz0v3759i+XLl0uisNu3b5/i65cvX8LIyEjtzbN69eo6XxvMw8MDLVu2hKWlpVqxoUxKHyqOHDmicn9m69Gjh2QyOjo6IigoCN7e3opZpgVBQHBwsKTmEzIyMpLEYOe8uLm5wcvLC3PmzEHDhg0BZH1omzt3rsq0E4WN3WoiCQkJgb+/P/r06YPKlSurLXEhlRf9mDFjYGpqikWLFikypqenY+rUqXjz5o0kpsWvW7cuDh8+LJmrqXLz5MkTdO/eHUWLFkWlSpXUuoak0CKS/Ydz0qRJqFy5stpyAmKN57lz5w5evnwJIGs8SkBAgKIlKVt0dDQWLVokmfW2tmzZgnXr1inWUyxTpgyGDx+udnUY5a1169aYNm2a2hvjL7/8gtWrV0vi6sSrV69i8ODBsLCwUEyP8M8//yAhIQEbN25UDHgXm1QGO+clNTUVkyZNwsmTJxV/IwVBQJs2beDv759jd39hYHEkEgcHh1z3SWXcBJD1ptSvXz8UK1ZM8aK/du0akpKS8PPPP+f5e+jK119/jbFjx0puJfH3DRkyBDdu3ECTJk1yHGcmhYniTpw4gWnTpiE5OVllu9jjeU6dOoXRo0er/LHMSe/eveHt7a3LaDnauXMnvL290b9/f5U3oZ07d2L27Nno06eP2BExdepU9OrVS9SJFAsiMDAQGzduxODBg1GnTh3I5XJERkZi27Zt+PHHHzFgwACxIwIAHjx4gJCQENy6dQtGRkawtbXFgAEDJLPaPSCdwc4FcefOHURHR0MQBNjb28PW1lant8/iiPL16NEjbN++XeWJ+s0336BixYpiRwOQ9Wlo4cKFGDp0KKpXr6522ayzs7NIyVTVr18fW7ZskcynyJy0a9cONWvWxNdff51jd6qYXVaPHj2CXC6Hq6srdu/ejdKlSyv2yWQyFC1aNNfxPbrWqVMnDBw4EAMHDlTZvm3bNuzcuRMHDx4UKdl/vv32W0RERMDKygo9evRAz549JTutyNq1a/Hzzz8rZry3trbGyJEjRRs0rK+kMti5IJ4/f4709HS1D0K6ar1mcUT5unfvHt6+fatoOQoODkabNm0ks+SFvrTCderUCUuXLhV1sGN+HB0dcfDgQcm+SQJZVyZWqFBBkktyZKtXrx4OHTqEKlWqqGyPjY2Fm5sbrl69KlIyVU+fPsXBgwdx8OBB/Pvvv2jYsCF69uyJ//3vf5Ice/bq1SvIZDJJFMH6uHyIq6srZs+ejVatWqlsP336NGbMmIE///xTpGT/iYyMhKenJ2JjY1W267r1mgOydahdu3YF/oMuhX50IOtqtTFjxmDIkCGK4igsLAz+/v5Yv349GjVqJHJC6dxX+XF3d8fs2bMxceJEVKlSRe2qESnMz9O4cWNcvnxZ0sVRxYoVcfr0aQQFBSEmJga7du3C3r17UaVKFXTv3l3seACyHsuoqCi14ujatWsqV36KrXz58hgxYgRGjBiBW7du4dChQ1i4cCF8fHwQGRkpdjwAWZfD50WslmF9XD5EKoOd87JgwQKULVsWU6dO1enVae9jcaRDPXv2VBRHCQkJ2L59O9q2bQsnJycYGRnh2rVrOHbsGIYNGyZy0v8sXboUQ4YMUVnZfteuXVi6dCn8/Pywc+dOEdNlye7eS0tLQ1xcHKpUqQJBENQGuYttwoQJyMzMxIgRI1SKZLHH8yhr1KgR5syZg1OnTuVYwElh3bKzZ89i3Lhx6NKlC65cuQK5XI6MjAx4enpCEARJXMzQr18/zJ07FwkJCYoFey9duoQVK1ZoNMGhrly5cgUHDx7E0aNHIQiCZN4oAWDQoEGQyWQq3SsymQwymQwGBgaIiooSJdfWrVtz/FrKxowZg+joaIwaNUptsPPkyZNFTpfl1q1bCA0N1fkYo/exW00kY8aMQYMGDdTmCtq6dStOnDiB4OBgkZKpyq2b5cGDB+jWrZskJrATBAFLlizB1q1bkZ6ejqNHj2LZsmUwMzODl5eXZIqkixcv5rlfCpeg68O6Zf369UOnTp0wZMgQODk54cCBA6hcuTLWr1+PAwcOSGI8j1wuh6+vL3bs2IHMzEwIggAjIyP069cP06dPV7sKUAwxMTE4ePAgDh06hAcPHsDFxQW9evXCl19+qbMrggri4cOHKt9nZmYiJiYGy5cvh7u7uyQWSwWy1n+Ljo5WGycjk8kk0cKu7M6dO/j3338BQJTBznnp2LEj/Pz8UK9ePXGDCCSK+vXrC/fu3VPbfu/ePaFevXoiJMpZ27ZthWPHjqlt/+2334SWLVuKkEhdcHCw0KJFC2HPnj1C/fr1hdjYWOHXX38VXFxchKVLl4odL0epqaliR9Bbjo6Owv379xVfx8bGCoIgCLGxsZJ67QiCICQmJgpXrlwRrly5IiQmJoodR4W9vb3g6uoqBAQECHFxcWLH0VhERITg5uYmdgxBEAThxIkTQqNGjQQHBwfB3t5e5Z+Dg4PY8fTK3r17hb59+wo3b94U0tLSRMvBbjWRlCtXDufOnVMb1HzixAnJXAUGZE1c6OXlhYSEBJXFKf39/SXRfQFkdfPNnj0bHTp0wPz58wFkLc9ibGwMX19flS5Bse3YsQPr16/HkydPcPToUQQFBaF8+fIYO3as2NFUhIeH486dO3Bzc8OTJ09gY2OT78y6umJubo74+Hi18Ty3b99Wm/tIl3Jb8y17jNGbN28UaylKYXzZ4sWL0bJlS0kMbv4QFhYWuH//vtgxAAB+fn5o2rQpxo4dK+o4mZzkttxOTqTQtb969Wo8evQo1/cXDsj+xA0fPhzz58/H5cuXUbduXcXcHcePH4efn5/Y8RS+//57vHr1CvPmzUNGRoaie2DQoEGYMGGC2PEAZA2GrFmzptp2BwcHxaW/UnDw4EEsWbIEgwcPRlBQEADA1tYWfn5+MDU1lcRYs7dv32L48OG4cuUKZDIZmjdvDj8/P8TGxmLTpk0oX7682BHRtWtX+Pj4wMfHBzKZDElJSThz5gzmz58v6liZglxwIUhofNn8+fOxfft2yRdHOQ3Ifvv2LYKDg3NdH0zX4uLisHbtWrWCXQqyXyf6YsyYMWJHAMDiSDR9+/ZFsWLF8PPPP+PYsWOQyWSoWbMmAgMD0bp1a7HjKRgZGcHLyws//vgjYmJiYGRkBBsbG0mNSahYsSKuXbumNkP2mTNnJHXV1caNGzFjxgz07NlTsRL7t99+i6JFi2L9+vWSKI6WLl0KmUyG48ePo1u3bgCAH3/8Ee7u7li0aJEkFhqeOHEinjx5ovhk2bNnT8WgUjFbCaUww7kmbGxsEB0djRo1aogdJU85DcgGsl73ixYtEimVKhsbGzx58kSSxVGvXr3EjqCRLl26qM1Vl+38+fM6y8HiSEQ1atRA//79kZmZqXjxP3nyBDNnzsSCBQvEjqeiWLFi+OWXXzB+/HhJFUZAVivc3Llz8ezZMwiCgHPnzmHXrl3YunVrnutH6VpMTEyOAzMbN26MefPmiZBI3e+//44lS5aoFJW2traYPXs2vv/+exGT/efx48dYsmQJJkyYgOvXr0Mul8POzk70N/ncBtQnJCTA0NBQkt0t7u7uCAoKgo2NjdqCyFKZmyeniwCMjY0lNfO0u7s75s+fj0mTJuU4Ea0UulGzHT58GMHBwYiOjoahoSFq1aqFkSNHokWLFmJHA5DVcrRmzRqVC2mSk5OxcOFC7N69m91qn7pNmzZh0aJFimb27E9FUryyIduBAwcwfPhwlZmJpaB3797IyMjA6tWr8e7dO8yePRulS5fGxIkT8c0334gdT6FMmTKIiYlRa826fPmyZP7Qv3z5EmXLllXbXqJECbUlRcQyYMAArFq1CvXq1ZPkJ/VsQUFB2LJli6Jrt1KlShg5ciS+/vprkZNliYmJUcx1I6Xu5/etXLlSMdmisoSEBEyfPh2BgYEiJfvP2LFjkZmZibFjx0p2mg4gaz262bNno1OnTujSpQsyMzMRGRmJUaNGYfny5XB1dRU7Ih4+fIjvv/8eq1atgrGxMf766y/MnDkTSUlJOm00YHEkkm3btmHEiBEYN24c2rZti3379iEhIQFTpkyRxOJ/OXm/WVsqDh06hE6dOqFv3754+fIlBEGApaWl2LHU9O3bF/PmzVPMpnv37l38+eef8Pf3x+DBg0VOlyV7Ed/vvvtOZfu2bdskM7O3sbGxZAaH52bdunUIDAzEoEGD4OTkBLlcjkuXLsHHxwcAJFEgSXlunkuXLuHBgwcAgNDQUNSuXVutOLpz5w7OnTsnRjw1mzZtEjtCgaxbtw5Tp05VWfx4yJAhCAoKwooVKyRRHG3duhVDhw7FuHHjULZsWfzyyy/o3LkzZsyYodO/65znSCR16tRBWFgYqlSpgmHDhqF///5wdXXFn3/+iYULF+LQoUNiR1SjPKeMlLi4uGD79u2id6sUxNKlSxEcHIzU1FQAkNzcN5GRkRg2bBhatGiB06dPo2vXrrhz5w7++ecfbNiwAY0bNxY7IgICArBjxw50794dVatWVevmlcJVlK1bt8akSZPUsvzyyy9Yt24djh07Jk6w97x79w5HjhzB3bt3MWzYMERHR+OLL76AhYWFqLkiIyMV66blNN4IAIoWLYphw4ZJYmJSfVG/fn3s378fNjY2Ktvv37+Pbt26SWZttZcvX2Lo0KG4deuWaEWbtD9+fcKKFi2KzMxMAECVKlVw+/ZtuLq6wtbWVm3SM6kYPXq0qJdK50ZfBpYCwOTJkzFmzBjcvn0bgiCgevXqap+IxdSgQQPs3LkTGzduRNWqVfH333/jiy++wPTp0yWzYO6qVasA5PxpXSaTSaI4ev36dY73l7Ozs2K6CbE9f/4cffv2xYsXL5CWloavvvoKGzduRFRUFIKDg0WdGLBBgwa4efMmgKyxUWfPnlVpNXj58iUsLCwkcxXWu3fvsH79ekRFReHdu3dqxZxUBus3atQIYWFhalOH/Pnnn4ouVjGEhoaqbevRoweWLVuGPXv24O3btyrbdYEtRyIZPXo0LCwsMHv2bBw8eBC//PILdu7cibCwMCxcuFASCwAqe/ToEe7cuQNnZ2ckJSVJqttq9uzZ+OWXX+Dg4CDpgaVA1v1YokQJFC9eHOfPn8exY8fQoEEDuLm5iR2NtGjKlCkoWbIkZs+erbJ95cqVuHPnDpYtWyZSsv+4u7vj7du3WLZsGZo1a4YDBw6gRIkSmDhxIkxMTLBmzRqxIwLImh9q8eLFGDhwIGrUqIERI0bg/PnzsLGxwbp16yTRku3p6YmwsDA0b948xw+QUvkbtHr1aqxevRotWrSAi4sLjI2Nce3aNRw6dAi9evVSGfuoyxa5vBYPV6bL8VssjkQSHR2NYcOGYciQIfjmm2/QtWtXvHnzBikpKRg+fLhk1rlJS0vDtGnTcPjwYRgYGODo0aP46aefkJSUhICAAEm0egwaNCjP/VIZW3H8+HFMmjQJa9euReXKldG5c2dUrlwZjx8/xo8//ogBAwaIHTHX1cVlMhmMjY1hZWWFTp06oVq1ajpOpl98fHywY8cOVK9eHS4uLjAyMkJUVBQiIiLQvn17lSvXxHrjbNGiBdatW4datWqpdJnfvHkT3377bb7L3eiKp6cnIiIisGbNGty6dQs//vgjfHx8EBYWBiMjIwQEBIgdEY0aNcLixYvRtm1bsaPkKa/lgZRJZakgMbFbTSR2dnY4ceIEkpOTUaxYMYSEhODQoUOKNx+pWL16NW7evIng4GCMHj0aQFYx4unpCT8/P3h5eYkbENIpfvITGBiI4cOHo2nTpli9ejUqVKiAX3/9FUeOHEFAQIAkiqP09HT8+uuvKFOmjGJto3/++QdPnz5F/fr1ceHCBaxZswYbN24UtRle6m7cuAFHR0cAUHQPAVlvoq9fv8br169FSvafpKQkFC1aNMd9GRkZOk6Tu9OnT2PVqlWwtbXF+vXr0bx5c3Tt2hX29vaSeM0AWcWEPnTrnzx5UuwIeoPFkYhMTU0Vg0nLlCmjcgWBVPz666/w8vJSGYjbuHFjeHt7Y+rUqZIojoCsGXPDwsIQHR0NAwMD1K5dG506dVLrYhPTnTt3sHLlShgYGODs2bNo3bo1DAwM4OjoKJlxZqampujYsSMWL16smKslPT0d06dPh7m5OWbPng0/Pz/4+/vrTVEqBn24b5ydnbFjxw6V1sL09HQEBgaiQYMGIiZTlZycDGtrawDA2bNnFYt1m5qaKsZtiq1Dhw7Yu3evZFYNyM/z58+Rlpamtl0K8zHduXMH8+fPR2RkJNLT09X2c54jkoSnT5/mOJeMtbW1JD79AlkvpsGDByMpKQnVqlVDZmYmQkJCEBgYiODgYFhZWYkdEUDWXEGJiYlITEzE1atXFX/kY2NjJbOEw5EjR7Bz506VSeyMjY0xatQofPPNN5g9ezb69OmD7du3i5hSP7x+/Rr37t1TexOSylxm06ZNw4ABA3Dx4kWkp6fDy8sLd+/exZs3b7Bt2zax4ynY2tri1KlTsLa2xrNnz9CqVSsAQEhIiKiDxpWLyqSkJOzbtw9//fUXbGxs1K48lcqYo9OnT8PT0xOvXr1S2S6l+Zi8vLzw4sULuLu7izpxKosjypOtrS3OnTuHr776SmX7r7/+Kplm5AULFqBmzZrw8/NTDIZ8+fIlpkyZggULFmDlypUiJ8zSunVrzJ49G8WKFYO5uTmaN2+Ov/76C15eXmjTpo3Y8QBkTS3w/Plztcf22bNniiuDMjMzJT/PkNj27NmDuXPnIj09Xe3KJam8Cdna2uLAgQPYsWMHypUrB7lcjqZNm2LMmDGSGOScbfz48fjhhx+Qnp4ONzc32NjYwNfXF9u2bVNcuSiGuLg4le+zC97cFiCWAm9vb9SrVw/9+/eX3EoH2a5cuYIdO3agdu3a4gYRiPJw8uRJoX79+oKPj49Qt25dYfny5cLEiROFmjVrCkeOHBE7niAIguDo6ChER0erbb9x44bg5OQkQqKcpaSkCL6+vsLYsWOFy5cvC4IgCCtWrBB+/PFH4e3bt+KG+3+zZ88WOnToIJw9e1Z4+/atkJiYKPzxxx9Cx44dBQ8PDyEpKUmYMmWKMGzYMLGjSlqrVq2EmTNnCrdv3xbi4uLU/knB69evhZkzZwo3b94UMjIyhMGDBwv29vZCp06dhNjYWLHjqXj58qVw48YNxfdXrlwRbt++LWKi/KWmpoodQU39+vWFO3fuiB0jT61atRL+/fdfsWMILI4oX6dPnxb69+8vODo6CvXq1RN69+4tmcJIEATB1dVVOHPmjNr28PBwoW3btiIk0l8pKSnCDz/8INjb2wsODg6Cg4ODULNmTWHSpElCYmKicPz4caFly5Yqb1SkztHRUYiJiRE7Rp48PDwEV1dX4fbt28Lhw4eFunXrCgcOHBBGjx4tjBs3Tux4euXdu3eCh4eHsGbNGsW2tm3bCjNnzpRUkTRq1CjhwIEDYsfI07p164RRo0YJiYmJoubgpfyk944fP46ffvoJHh4eisumr127hrlz5+Lrr79Gx44dFceKOeAwp4nOlElh8sJsDx48wPXr12FkZAR7e3tUqlQJQNbUDrmtmE3/+fHHH1GnTh3JLAuTk2bNmmHVqlVwcnKCh4cHEhISsGbNGkRHR2PAgAEIDw8XO6Le8PLywtmzZ+Ht7a1YgPj48eNYvHgx2rdvj2nTpomcMMuTJ0/Qp08fNGvWDJUrV1abRFMKs40PHToUERERyMzMhKWlpdrfG11NMcDiiPKkD2/oyhOI5bToo/LXYo71yG2iMxMTE1hZWeHo0aM6TlRwaWlpuHbtGi/fL6D4+Hh07doVtra2qFKlitqbkBQG6Do6OuLIkSOwsrJCy5YtMXLkSHz77beIjY1Fjx49EBkZKXZEvdGiRQsEBATAyclJZXt4eDimTJmCM2fOiJRM1ezZsxESEgILCwuYmZmp7JPK3Eb5jRHVVQHHUZWUJw8Pjxy3Z7+hS6E4ksrU/PlRnu8GyBrYfO/ePXh5eaFv374ipVIVFRWFWbNmITo6GnK5XG2/FAYS64MFCxYgKSkJaWlpkpmm4X1SvQpMHyUlJaFEiRJq20uXLi2Zq3qBrEW6fX190bNnT7Gj5EoKrVcAiyPKhz68oWc3YwP61e1jaGgIW1tbeHp6YsKECZJYQsTX1xeGhoaYOXMmfH194eHhgdjYWGzbtg2LFi0SO57eOHPmDFavXo2WLVuKHSVXUr0KTB85OjoiKCgI3t7eisv4BUFAcHAw6tatK3K6/5iZmUlqDqucSKW3gt1q9EGuX7+OCRMm4Pjx42JHAQDs2LED69evx5MnT3D06FEEBQWhfPnyagssStHNmzfRt29fSayI7eTkhODgYNSrVw9fffUVpk2bhkaNGmHz5s04ffp0jou9krq2bdsiKChI8i0wr169wtOnTxVdvlevXkWxYsUkn1tqrl69isGDB8PCwgJ16tQBkDWzfEJCAjZu3CipRZtjYmIwf/58tW41qZDK8AO2HNEHMTAwQHx8vNgxAAAHDx7EkiVLMHjwYAQFBQHI6jLw8/ODqakphg0bJnLCLDl9Inr79i1CQkIUS3WITS6Xo2zZsgCAqlWrIjo6Go0aNUL79u2xdu1akdPpj9GjR8Pb2xuzZs1ClSpVYGhoKHakHFlYWMDCwkLxvVSeh/qmXr16OHjwIHbt2oVbt27ByMgIbm5uGDBggMpirmKLiIhAeHg4jhw5AktLS7X5yqQw5kgqvRUsjihP+vCGvnHjRsyYMQM9e/bExo0bAQDffvstihYtivXr10umOMpp/JaRkRGcnJwkswxL1apVcenSJbi5uaF69eq4du0aACAxMTHH5QYoZxs2bMCjR4/QuXPnHPdz7Nanp1KlSpgyZYrYMfLUsGFDvbuoQqzhByyOKE/68IYeExOT43IMjRs3xrx580RIlLP3PxFJ0aBBgzBjxgwAwJdffonu3bvD1NQUkZGRioVUKX9jxowROwLp2OnTp7FhwwbcvXsXu3btwt69e1GlShV0795d7GgKUhns/CF03VvB4ojypA9v6GXKlEFMTIzakgeXL1+WVJN2tjt37iA6OhrGxsawtbVFtWrVxI6k8NVXX8HCwgKlSpWCra0tfH19sX79elhbW2PWrFlix9MbUr4aiLTv7NmzGDduHLp06YK///4bcrkcGRkZ8PT0hCAIkriqN9vNmzcRHByMmJgYLF++HCdOnMAXX3yhcmGLmKTSW8HiiPRe3759MW/ePMVCkHfv3sWff/4Jf39/SU3Cl5qaiilTpuDEiROKbTKZDG3btoW/v79krrJzdXVVfN21a1d07dpVxDT6Sx9aEkg7AgICMGXKFAwZMkQxYHjSpEkoXrw4NmzYIJniKCoqCt988w0cHR0RFRWFtLQ03LhxA76+vli1ahVat24tdkTJ9FawOCI17dq1U5u0LjdSGMA3cuRIJCYmYvLkyUhNTcWoUaNgZGSEfv36YfTo0WLHU1i2bBmuXr2KVatWwcXFBXK5HOHh4ViwYIHij6vY5HI5Dh48iMjIyBwXTZXC5IX6QJ9aEujj/fvvvzlOddGpUyfJLHwNAH5+fhg2bBgmTZqkmLBywYIFKFasGAICAiRRHEmlt4LFEanp2bNngYsjKYiIiMAPP/yAMWPG4Pbt2xAEAdWrV0fx4sXFjqbi0KFDmD9/Ptq2bavY5urqCkNDQ8ydO1cSxZGPjw+2bdsGBwcHyd1/+kRfWhJIO8zNzREfH48qVaqobL99+zZKliwpUip1UVFRmDNnjtr2AQMGICQkRIRE0sXiiNT88MMPYkfQyA8//ICgoCDUrl1bUhOuvS8pKQnVq1dX216tWjW8fPlShETqDh48CB8fH46Z+Uj60pJA2tG1a1f4+PjAx8cHMpkMSUlJOHPmDObPn5/rFYtiMDY2xtu3b9W2P378WLLzHonFQOwAJH3Xr1/H1KlT0bNnT/Tt2xezZs1CbGys2LEUSpcujcTERLFj5MvOzg5HjhxR23748GHJDMpOS0uDs7Oz2DH0XnZLwvuk1pJA2jFx4kRUq1YNPXr0QHJyMnr27InvvvsOdnZ2mDhxotjxFFxdXeHv7483b94ott25cwfe3t5o06aNeMEkiC1HlKcjR45g0qRJcHR0ROPGjZGZmYnIyEi4ublh3bp1aNKkidgR0apVK4waNQqtW7dG1apVYWJiorJfKpevjhkzBmPHjsWNGzcUU/hfunQJx48fx5IlS0ROl6Vly5Y4ffo0BgwYIHYUvaYvLQmkHZ06dcIvv/yCCRMm4Pr165DL5bCzs4O5uTlat26NCxcuiB0RADBt2jSMGDECTZo0gVwuR69evfD27Vs4ODhg6tSpYseTFC4fQnnq3LkzvvzyS0yYMEFlu4+PDyIiIrB3716Rkv2nXbt2ue6TykrT2Y4fP47169cjOjoagiDA3t4eI0aMQMeOHcWOBiBrQs0VK1agRYsWsLW1hbGxscp+qRSaUpeeng4PDw/8+uuvALKeh4IgoE2bNli+fLlaAU/6JywsDH/88QcAYN++fejcubPa4/rw4UNER0fj/PnzYkTM1blz51SKuJYtWyrWhKMsLI4oT3Xr1sWhQ4dQtWpVle0xMTHo3r07rl69KlKygpHL5XzRa0CfCk19EBsbq/ImVKNGDbEjkZY8fvwY06ZNgyAICA8Ph6Ojo8qHCZlMhqJFi+Kbb76RxFVgpBl2q1GeateujYsXL6oVR1euXJHMH/r27dtjz549KFWqlMr2p0+folu3bpJp0gaACxcuICoqCu/evVO7TF4KrTInT54UO8InpUqVKti4cSPGjx+P0qVLix2HtMja2hpbtmwBkDWz/KpVq1CiRAmRU+Xt7t27mDdvnmKqjvdxWZv/sDgiNcozlDo7O2PBggW4e/cuGjZsCAMDA/zzzz/YtGkTvv/+e9EyKjdpP3z4EPPmzcuxSVtKUxKsW7cOS5cuhbm5OczNzVX2yWQySRRHuUlLS8O1a9f0bl0mKThw4ACGDx/O4ugTtnXrVrEjFMicOXPw4sULuLu7q/0NIlXsViM1Dg4OBTpOJpOJ9klDH5u0W7VqhW+++UbS625FRUVh1qxZiI6OhlwuV9vPT5aac3JywoEDB9SWtyHStXr16mHHjh2oXbu22FEkjy1HpEYqM5Tm5f0m7ZUrV0r+EumEhATJL8Xh6+sLQ0NDzJw5E76+vvDw8EBsbCy2bduW47w9RKQ/LCws1C6yoJxxpCrpva1bt0q+MAKAhg0b4vLly2LHyNP169cxe/ZsfPPNN7C3t4ednR08PDwwZcoUzqCbjxMnTiA1NVVt++jRo/Xi+UmfvoEDB2Lp0qU5TgRJqthyRHpPyoMMlcdv1a1bF15eXrh16xaqVq0KQ0NDlWOlsKSEXC5H2bJlAQBVq1ZFdHQ0GjVqhPbt22Pt2rUip5M2d3d3HDlyBFZWVmjfvj1++eUXWFhYYNSoUWJHIwIA/PXXX4iIiICLiwssLS3VFrvm1aj/YXFEek/KgwxzWmF63bp1attkMpkkiqOqVavi0qVLcHNzQ/Xq1XHt2jUAQGJiItLS0kROJ23FixdHQEAAGjVqhIcPH+LXX3/NdX06KTzW9Plp2LAhL6ooIA7IJr3HQYbas3v3bixYsADe3t6oWbMmunfvjq+++gqRkZEoU6YMNmzYIHZEydqzZw8WLVqE169fKyZ9zImYFzIQUcGwOCK917p1a6xfvx52dnZiR/kknDhxAqVKlUKjRo1w8OBBrF+/HtbW1pg1axYqVaokdjy94ODggD///BNlypQROwqRgnI3f07YovkfFkek99avX49Lly7Bz88v124MIl16+PAhKlSoIKl5tohym6bFxMQEVlZWOHr0qI4TSRfHHJHe4yBD7UlLS8Pu3bsRHR2d4xgjX19fEVLpB09PzwIfy/uRxPD+NC2ZmZm4d+8evLy80LdvX5FSSROLI9J7HGSoPdOmTcOJEydQs2ZNLo6qobi4OLEjEGnE0NAQtra28PT0xIQJE+Dm5iZ2JMlgtxp9Em7evIng4GDcvXsXK1aswIkTJ1CjRg00btxY7Gh6pWHDhli4cCE6dOggdhQi0pGbN2+ib9++uHLlithRJIMtR6T3oqKi0L9/f9SvXx///PMP0tLScPPmTfj6+mLVqlWSWT5EH5QoUQLVqlUTO8Yn4d27dzhy5Aju3r2LYcOGITo6Gl988QUsLCzEjkafqZwGZL99+xYhISGoV6+e7gNJGFuOSO8NHjwYjo6OmDRpkso6Vr6+vrh06RJ++eUXsSPqjV27duHYsWPw8vLiWmAf4fnz5+jbty9evHiBtLQ0HD16FN7e3oiKikJwcDBsbW3FjkifoZwGZBsZGcHJyQleXl58XiphcUR6r1GjRti9ezeqVaumUhzFxsaie/fukl+yQ0ouX76M0aNH482bNznu5/w8BePu7o63b99i2bJlaNasGQ4cOIASJUpg4sSJMDExwZo1a8SOSER5YLca6T1jY+Mc1wp6/PgxzMzMREikv2bMmAEbGxt069YNRYsWFTuO3jp//jzWrVun8vwrWbIkpk2bhm+//VbEZERUECyOSO+5urrC398fy5YtU2y7c+cOvL290aZNG/GC6aG4uDgcOHAANjY2YkfRa0lJSbkWlxkZGTpOQ0SaMhA7ANHHmjZtGpKSktCkSROkpKSgV69ecHNzg6GhIaZOnSp2PL1St25d3L9/X+wYes/Z2Rk7duxQ2Zaeno7AwEA0aNBApFREVFAcc0SfjHPnzuH69euQy+Wws7NDy5YtYWDA+l8TISEh8Pf3R58+fVC5cmUYGxur7OfyAgVz584dDBgwANbW1rh16xYaN26Mu3fv4s2bN9i2bVuuMxUTkTSwOCIihbzetLlgqmbi4+OxY8cORcFetmxZjBkzhlcBEukBFkdERFr25s0bLF68GAMHDkSNGjUwfPhwnD9/HtWqVcO6detYIBFJHPsciIi0zNfXF+fPn4eRkRGOHz+OyMhILF68GDY2Nli0aJHY8YgoH7xajYhIy06fPo1Vq1bB1tYW69evR7NmzdC1a1fY29tjwIABYscjonyw5YiISMuSk5NhbW0NADh79iyaNWsGADA1NUVmZqaY0YioANhyRESkZba2tjh16hSsra3x7NkztGrVCkDW1YBcooFI+lgcERFp2fjx4/HDDz8gPT0dbm5usLGxga+vL7Zt24ZVq1aJHY+I8sGr1YiICsGrV6/w9OlTxfQIV69eRbFixdhyRKQHWBwRERERKeGAbCIiIiIlLI6IiIiIlLA4IiIiIlLC4oiIPjsBAQGwt7cv8PF79+6Fvb094uLiCjEVEUkFiyMiIiIiJSyOiIiIiJSwOCKiz97Zs2fRv39/NGzYEI0bN8aUKVPw+PFjteMiIyPRo0cP1KlTB25ubggLCxMhLREVNhZHRPRZCw0NxbBhw2BtbY2lS5fC09MTly9fRt++ffHixQuVY2fPno3//e9/CAwMxBdffIFJkybhxIkTIiUnosLC5UOI6LMll8vh5+eHFi1aYMmSJYrtDRo0QOfOnbFhwwZMnTpVsf2HH37A8OHDAQCtWrXCvXv3EBgYCFdXV51nJ6LCw5YjIvpsxcTE4NmzZ3Bzc1PZXqVKFTg5OeHixYsq2zt37qzyvaurK65fv46kpKRCz0pEusPiiIg+WwkJCQCAMmXKqO0rU6YMEhMT1bYps7S0hCAIePv2baFlJCLdY3FERJ+0q1evYtGiRcjIyFBsy8zMhImJCUqVKgUAeP78udrPPXv2DBYWFirbXr9+rfL98+fPYWhoiJIlS2o/OBGJhsUREX3Sbt++jQ0bNqhM4Pj48WNYWVmhWrVqKFu2LA4dOqTyMw8ePMDff/+NBg0aqGw/deqU4mu5XI4jR46gfv36MDU1LdTfgYh0iwOyieiT1rx5cxQtWhTz58/H8OHDERMTg7CwMAwbNgwGBgaYPHkyPD09MWXKFHTr1g2vXr3CypUrUbJkSQwdOlTlXP7+/sjMzIS1tTV27NiBmJgYbNq0SaTfjIgKi0wQBEHsEEREhencuXNYsmQJbt++jeLFi6Nnz54YP348jI2NAQBHjx7F2rVrER0djeLFi6Nly5aYPHkyrK2tAWQtH+Lp6YmgoCAsXLgQ9+/fh52dHdzd3dGsWTMxfzUiKgQsjoiIiIiUcMwRERERkRIWR0RERERKWBwRERERKWFxRERERKSExRERERGREhZHREREREpYHBEREREpYXFEREREpITFEREREZESFkdERERESlgcERERESlhcURERESk5P8AHlo5anHvemAAAAAASUVORK5CYII=",
"text/plain": [
"