ibnummuhammad
commited on
Commit
•
dc9fbf8
1
Parent(s):
a663bf1
Format code
Browse files- penguins_binary_classification.ipynb +328 -10
penguins_binary_classification.ipynb
CHANGED
@@ -6,7 +6,11 @@
|
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
-
"import pandas as pd"
|
|
|
|
|
|
|
|
|
10 |
]
|
11 |
},
|
12 |
{
|
@@ -396,7 +400,7 @@
|
|
396 |
{
|
397 |
"data": {
|
398 |
"text/plain": [
|
399 |
-
"<seaborn.axisgrid.PairGrid at
|
400 |
]
|
401 |
},
|
402 |
"execution_count": 5,
|
@@ -428,12 +432,6 @@
|
|
428 |
"metadata": {},
|
429 |
"outputs": [],
|
430 |
"source": [
|
431 |
-
"import pandas as pd\n",
|
432 |
-
"import numpy as np\n",
|
433 |
-
"from sklearn.linear_model import LogisticRegression\n",
|
434 |
-
"from sklearn.model_selection import train_test_split\n",
|
435 |
-
"import matplotlib.pyplot as plt\n",
|
436 |
-
"\n",
|
437 |
"# One-hot encode the categorical data and sort by flipper_length_mm\n",
|
438 |
"df_dummy = pd.get_dummies(df, dtype=int).sort_values(\n",
|
439 |
" by=\"flipper_length_mm\", ascending=True\n",
|
@@ -876,6 +874,7 @@
|
|
876 |
"outputs": [],
|
877 |
"source": [
|
878 |
"# Select the features and the target variable\n",
|
|
|
879 |
"X = df_dummy[[\"flipper_length_mm\"]]\n",
|
880 |
"Y = df_dummy[\"species_Gentoo\"]"
|
881 |
]
|
@@ -1482,6 +1481,325 @@
|
|
1482 |
"cell_type": "code",
|
1483 |
"execution_count": 15,
|
1484 |
"metadata": {},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1485 |
"outputs": [],
|
1486 |
"source": [
|
1487 |
"X_gentoo = df_dummy[df_dummy[\"species_Gentoo\"] == 1][\"flipper_length_mm\"].values\n",
|
@@ -1490,7 +1808,7 @@
|
|
1490 |
},
|
1491 |
{
|
1492 |
"cell_type": "code",
|
1493 |
-
"execution_count":
|
1494 |
"metadata": {},
|
1495 |
"outputs": [
|
1496 |
{
|
@@ -1512,7 +1830,7 @@
|
|
1512 |
},
|
1513 |
{
|
1514 |
"cell_type": "code",
|
1515 |
-
"execution_count":
|
1516 |
"metadata": {},
|
1517 |
"outputs": [
|
1518 |
{
|
|
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
+
"import pandas as pd\n",
|
10 |
+
"import numpy as np\n",
|
11 |
+
"from sklearn.linear_model import LogisticRegression\n",
|
12 |
+
"from sklearn.model_selection import train_test_split\n",
|
13 |
+
"import matplotlib.pyplot as plt"
|
14 |
]
|
15 |
},
|
16 |
{
|
|
|
400 |
{
|
401 |
"data": {
|
402 |
"text/plain": [
|
403 |
+
"<seaborn.axisgrid.PairGrid at 0x166cf13d0>"
|
404 |
]
|
405 |
},
|
406 |
"execution_count": 5,
|
|
|
432 |
"metadata": {},
|
433 |
"outputs": [],
|
434 |
"source": [
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
"# One-hot encode the categorical data and sort by flipper_length_mm\n",
|
436 |
"df_dummy = pd.get_dummies(df, dtype=int).sort_values(\n",
|
437 |
" by=\"flipper_length_mm\", ascending=True\n",
|
|
|
874 |
"outputs": [],
|
875 |
"source": [
|
876 |
"# Select the features and the target variable\n",
|
877 |
+
"# X = df_dummy[[\"bill_length_mm\", \"bill_depth_mm\", \"flipper_length_mm\", \"body_mass_g\"]]\n",
|
878 |
"X = df_dummy[[\"flipper_length_mm\"]]\n",
|
879 |
"Y = df_dummy[\"species_Gentoo\"]"
|
880 |
]
|
|
|
1481 |
"cell_type": "code",
|
1482 |
"execution_count": 15,
|
1483 |
"metadata": {},
|
1484 |
+
"outputs": [
|
1485 |
+
{
|
1486 |
+
"data": {
|
1487 |
+
"text/plain": [
|
1488 |
+
"array([[4.83683797e-10],\n",
|
1489 |
+
" [5.49019745e-10],\n",
|
1490 |
+
" [6.23181265e-10],\n",
|
1491 |
+
" [7.07360515e-10],\n",
|
1492 |
+
" [8.02910687e-10],\n",
|
1493 |
+
" [9.11367764e-10],\n",
|
1494 |
+
" [1.03447521e-09],\n",
|
1495 |
+
" [1.17421200e-09],\n",
|
1496 |
+
" [1.33282441e-09],\n",
|
1497 |
+
" [1.51286217e-09],\n",
|
1498 |
+
" [1.71721940e-09],\n",
|
1499 |
+
" [1.94918119e-09],\n",
|
1500 |
+
" [2.21247635e-09],\n",
|
1501 |
+
" [2.51133738e-09],\n",
|
1502 |
+
" [2.85056853e-09],\n",
|
1503 |
+
" [3.23562297e-09],\n",
|
1504 |
+
" [3.67269053e-09],\n",
|
1505 |
+
" [4.16879712e-09],\n",
|
1506 |
+
" [4.73191772e-09],\n",
|
1507 |
+
" [5.37110458e-09],\n",
|
1508 |
+
" [6.09663273e-09],\n",
|
1509 |
+
" [6.92016513e-09],\n",
|
1510 |
+
" [7.85494018e-09],\n",
|
1511 |
+
" [8.91598454e-09],\n",
|
1512 |
+
" [1.01203546e-08],\n",
|
1513 |
+
" [1.14874109e-08],\n",
|
1514 |
+
" [1.30391289e-08],\n",
|
1515 |
+
" [1.48004528e-08],\n",
|
1516 |
+
" [1.67996962e-08],\n",
|
1517 |
+
" [1.90689970e-08],\n",
|
1518 |
+
" [2.16448348e-08],\n",
|
1519 |
+
" [2.45686163e-08],\n",
|
1520 |
+
" [2.78873419e-08],\n",
|
1521 |
+
" [3.16543606e-08],\n",
|
1522 |
+
" [3.59302276e-08],\n",
|
1523 |
+
" [4.07836781e-08],\n",
|
1524 |
+
" [4.62927322e-08],\n",
|
1525 |
+
" [5.25459484e-08],\n",
|
1526 |
+
" [5.96438483e-08],\n",
|
1527 |
+
" [6.77005315e-08],\n",
|
1528 |
+
" [7.68455104e-08],\n",
|
1529 |
+
" [8.72257916e-08],\n",
|
1530 |
+
" [9.90082397e-08],\n",
|
1531 |
+
" [1.12382259e-07],\n",
|
1532 |
+
" [1.27562839e-07],\n",
|
1533 |
+
" [1.44794009e-07],\n",
|
1534 |
+
" [1.64352763e-07],\n",
|
1535 |
+
" [1.86553510e-07],\n",
|
1536 |
+
" [2.11753130e-07],\n",
|
1537 |
+
" [2.40356711e-07],\n",
|
1538 |
+
" [2.72824057e-07],\n",
|
1539 |
+
" [3.09677086e-07],\n",
|
1540 |
+
" [3.51508214e-07],\n",
|
1541 |
+
" [3.98989882e-07],\n",
|
1542 |
+
" [4.52885362e-07],\n",
|
1543 |
+
" [5.14061030e-07],\n",
|
1544 |
+
" [5.83500290e-07],\n",
|
1545 |
+
" [6.62319386e-07],\n",
|
1546 |
+
" [7.51785341e-07],\n",
|
1547 |
+
" [8.53336326e-07],\n",
|
1548 |
+
" [9.68604782e-07],\n",
|
1549 |
+
" [1.09944365e-06],\n",
|
1550 |
+
" [1.24795618e-06],\n",
|
1551 |
+
" [1.41652971e-06],\n",
|
1552 |
+
" [1.60787407e-06],\n",
|
1553 |
+
" [1.82506510e-06],\n",
|
1554 |
+
" [2.07159416e-06],\n",
|
1555 |
+
" [2.35142419e-06],\n",
|
1556 |
+
" [2.66905344e-06],\n",
|
1557 |
+
" [3.02958776e-06],\n",
|
1558 |
+
" [3.43882269e-06],\n",
|
1559 |
+
" [3.90333663e-06],\n",
|
1560 |
+
" [4.43059653e-06],\n",
|
1561 |
+
" [5.02907796e-06],\n",
|
1562 |
+
" [5.70840132e-06],\n",
|
1563 |
+
" [6.47948648e-06],\n",
|
1564 |
+
" [7.35472828e-06],\n",
|
1565 |
+
" [8.34819579e-06],\n",
|
1566 |
+
" [9.47585837e-06],\n",
|
1567 |
+
" [1.07558424e-05],\n",
|
1568 |
+
" [1.22087225e-05],\n",
|
1569 |
+
" [1.38578524e-05],\n",
|
1570 |
+
" [1.57297400e-05],\n",
|
1571 |
+
" [1.78544734e-05],\n",
|
1572 |
+
" [2.02662046e-05],\n",
|
1573 |
+
" [2.30036981e-05],\n",
|
1574 |
+
" [2.61109537e-05],\n",
|
1575 |
+
" [2.96379136e-05],\n",
|
1576 |
+
" [3.36412647e-05],\n",
|
1577 |
+
" [3.81853491e-05],\n",
|
1578 |
+
" [4.33431978e-05],\n",
|
1579 |
+
" [4.91977037e-05],\n",
|
1580 |
+
" [5.58429524e-05],\n",
|
1581 |
+
" [6.33857334e-05],\n",
|
1582 |
+
" [7.19472545e-05],\n",
|
1583 |
+
" [8.16650872e-05],\n",
|
1584 |
+
" [9.26953747e-05],\n",
|
1585 |
+
" [1.05215337e-04],\n",
|
1586 |
+
" [1.19426115e-04],\n",
|
1587 |
+
" [1.35555993e-04],\n",
|
1588 |
+
" [1.53864063e-04],\n",
|
1589 |
+
" [1.74644372e-04],\n",
|
1590 |
+
" [1.98230635e-04],\n",
|
1591 |
+
" [2.25001581e-04],\n",
|
1592 |
+
" [2.55387005e-04],\n",
|
1593 |
+
" [2.89874650e-04],\n",
|
1594 |
+
" [3.29017999e-04],\n",
|
1595 |
+
" [3.73445113e-04],\n",
|
1596 |
+
" [4.23868652e-04],\n",
|
1597 |
+
" [4.81097232e-04],\n",
|
1598 |
+
" [5.46048301e-04],\n",
|
1599 |
+
" [6.19762725e-04],\n",
|
1600 |
+
" [7.03421310e-04],\n",
|
1601 |
+
" [7.98363516e-04],\n",
|
1602 |
+
" [9.06108645e-04],\n",
|
1603 |
+
" [1.02837982e-03],\n",
|
1604 |
+
" [1.16713111e-03],\n",
|
1605 |
+
" [1.32457821e-03],\n",
|
1606 |
+
" [1.50323311e-03],\n",
|
1607 |
+
" [1.70594325e-03],\n",
|
1608 |
+
" [1.93593574e-03],\n",
|
1609 |
+
" [2.19686721e-03],\n",
|
1610 |
+
" [2.49288000e-03],\n",
|
1611 |
+
" [2.82866541e-03],\n",
|
1612 |
+
" [3.20953483e-03],\n",
|
1613 |
+
" [3.64149966e-03],\n",
|
1614 |
+
" [4.13136080e-03],\n",
|
1615 |
+
" [4.68680897e-03],\n",
|
1616 |
+
" [5.31653669e-03],\n",
|
1617 |
+
" [6.03036307e-03],\n",
|
1618 |
+
" [6.83937256e-03],\n",
|
1619 |
+
" [7.75606864e-03],\n",
|
1620 |
+
" [8.79454350e-03],\n",
|
1621 |
+
" [9.97066455e-03],\n",
|
1622 |
+
" [1.13022784e-02],\n",
|
1623 |
+
" [1.28094325e-02],\n",
|
1624 |
+
" [1.45146145e-02],\n",
|
1625 |
+
" [1.64430081e-02],\n",
|
1626 |
+
" [1.86227643e-02],\n",
|
1627 |
+
" [2.10852837e-02],\n",
|
1628 |
+
" [2.38655076e-02],\n",
|
1629 |
+
" [2.70022090e-02],\n",
|
1630 |
+
" [3.05382771e-02],\n",
|
1631 |
+
" [3.45209812e-02],\n",
|
1632 |
+
" [3.90022003e-02],\n",
|
1633 |
+
" [4.40385993e-02],\n",
|
1634 |
+
" [4.96917253e-02],\n",
|
1635 |
+
" [5.60279978e-02],\n",
|
1636 |
+
" [6.31185556e-02],\n",
|
1637 |
+
" [7.10389212e-02],\n",
|
1638 |
+
" [7.98684382e-02],\n",
|
1639 |
+
" [8.96894320e-02],\n",
|
1640 |
+
" [1.00586046e-01],\n",
|
1641 |
+
" [1.12642703e-01],\n",
|
1642 |
+
" [1.25942160e-01],\n",
|
1643 |
+
" [1.40563116e-01],\n",
|
1644 |
+
" [1.56577391e-01],\n",
|
1645 |
+
" [1.74046679e-01],\n",
|
1646 |
+
" [1.93018968e-01],\n",
|
1647 |
+
" [2.13524721e-01],\n",
|
1648 |
+
" [2.35573007e-01],\n",
|
1649 |
+
" [2.59147794e-01],\n",
|
1650 |
+
" [2.84204676e-01],\n",
|
1651 |
+
" [3.10668348e-01],\n",
|
1652 |
+
" [3.38431114e-01],\n",
|
1653 |
+
" [3.67352732e-01],\n",
|
1654 |
+
" [3.97261785e-01],\n",
|
1655 |
+
" [4.27958707e-01],\n",
|
1656 |
+
" [4.59220422e-01],\n",
|
1657 |
+
" [4.90806432e-01],\n",
|
1658 |
+
" [5.22466015e-01],\n",
|
1659 |
+
" [5.53946110e-01],\n",
|
1660 |
+
" [5.84999352e-01],\n",
|
1661 |
+
" [6.15391729e-01],\n",
|
1662 |
+
" [6.44909362e-01],\n",
|
1663 |
+
" [6.73364020e-01],\n",
|
1664 |
+
" [7.00597089e-01],\n",
|
1665 |
+
" [7.26481903e-01],\n",
|
1666 |
+
" [7.50924455e-01],\n",
|
1667 |
+
" [7.73862649e-01],\n",
|
1668 |
+
" [7.95264337e-01],\n",
|
1669 |
+
" [8.15124447e-01],\n",
|
1670 |
+
" [8.33461489e-01],\n",
|
1671 |
+
" [8.50313747e-01],\n",
|
1672 |
+
" [8.65735415e-01],\n",
|
1673 |
+
" [8.79792851e-01],\n",
|
1674 |
+
" [8.92561134e-01],\n",
|
1675 |
+
" [9.04120984e-01],\n",
|
1676 |
+
" [9.14556122e-01],\n",
|
1677 |
+
" [9.23951065e-01],\n",
|
1678 |
+
" [9.32389359e-01],\n",
|
1679 |
+
" [9.39952202e-01],\n",
|
1680 |
+
" [9.46717418e-01],\n",
|
1681 |
+
" [9.52758747e-01],\n",
|
1682 |
+
" [9.58145375e-01],\n",
|
1683 |
+
" [9.62941690e-01],\n",
|
1684 |
+
" [9.67207184e-01],\n",
|
1685 |
+
" [9.70996498e-01],\n",
|
1686 |
+
" [9.74359553e-01],\n",
|
1687 |
+
" [9.77341750e-01],\n",
|
1688 |
+
" [9.79984217e-01],\n",
|
1689 |
+
" [9.82324087e-01],\n",
|
1690 |
+
" [9.84394778e-01],\n",
|
1691 |
+
" [9.86226294e-01],\n",
|
1692 |
+
" [9.87845508e-01],\n",
|
1693 |
+
" [9.89276439e-01],\n",
|
1694 |
+
" [9.90540522e-01],\n",
|
1695 |
+
" [9.91656852e-01],\n",
|
1696 |
+
" [9.92642421e-01],\n",
|
1697 |
+
" [9.93512327e-01],\n",
|
1698 |
+
" [9.94279975e-01],\n",
|
1699 |
+
" [9.94957252e-01],\n",
|
1700 |
+
" [9.95554695e-01],\n",
|
1701 |
+
" [9.96081635e-01],\n",
|
1702 |
+
" [9.96546328e-01],\n",
|
1703 |
+
" [9.96956081e-01],\n",
|
1704 |
+
" [9.97317350e-01],\n",
|
1705 |
+
" [9.97635843e-01],\n",
|
1706 |
+
" [9.97916603e-01],\n",
|
1707 |
+
" [9.98164082e-01],\n",
|
1708 |
+
" [9.98382211e-01],\n",
|
1709 |
+
" [9.98574461e-01],\n",
|
1710 |
+
" [9.98743894e-01],\n",
|
1711 |
+
" [9.98893211e-01],\n",
|
1712 |
+
" [9.99024796e-01],\n",
|
1713 |
+
" [9.99140750e-01],\n",
|
1714 |
+
" [9.99242927e-01],\n",
|
1715 |
+
" [9.99332963e-01],\n",
|
1716 |
+
" [9.99412296e-01],\n",
|
1717 |
+
" [9.99482200e-01],\n",
|
1718 |
+
" [9.99543792e-01],\n",
|
1719 |
+
" [9.99598061e-01],\n",
|
1720 |
+
" [9.99645877e-01],\n",
|
1721 |
+
" [9.99688006e-01],\n",
|
1722 |
+
" [9.99725125e-01],\n",
|
1723 |
+
" [9.99757828e-01],\n",
|
1724 |
+
" [9.99786642e-01],\n",
|
1725 |
+
" [9.99812028e-01],\n",
|
1726 |
+
" [9.99834393e-01],\n",
|
1727 |
+
" [9.99854099e-01],\n",
|
1728 |
+
" [9.99871459e-01],\n",
|
1729 |
+
" [9.99886755e-01],\n",
|
1730 |
+
" [9.99900230e-01],\n",
|
1731 |
+
" [9.99912102e-01],\n",
|
1732 |
+
" [9.99922561e-01],\n",
|
1733 |
+
" [9.99931776e-01],\n",
|
1734 |
+
" [9.99939895e-01],\n",
|
1735 |
+
" [9.99947047e-01],\n",
|
1736 |
+
" [9.99953349e-01],\n",
|
1737 |
+
" [9.99958900e-01],\n",
|
1738 |
+
" [9.99963791e-01],\n",
|
1739 |
+
" [9.99968100e-01],\n",
|
1740 |
+
" [9.99971896e-01],\n",
|
1741 |
+
" [9.99975240e-01],\n",
|
1742 |
+
" [9.99978187e-01],\n",
|
1743 |
+
" [9.99980783e-01],\n",
|
1744 |
+
" [9.99983070e-01],\n",
|
1745 |
+
" [9.99985084e-01],\n",
|
1746 |
+
" [9.99986859e-01],\n",
|
1747 |
+
" [9.99988423e-01],\n",
|
1748 |
+
" [9.99989801e-01],\n",
|
1749 |
+
" [9.99991015e-01],\n",
|
1750 |
+
" [9.99992084e-01],\n",
|
1751 |
+
" [9.99993026e-01],\n",
|
1752 |
+
" [9.99993856e-01],\n",
|
1753 |
+
" [9.99994587e-01],\n",
|
1754 |
+
" [9.99995231e-01],\n",
|
1755 |
+
" [9.99995799e-01],\n",
|
1756 |
+
" [9.99996299e-01],\n",
|
1757 |
+
" [9.99996739e-01],\n",
|
1758 |
+
" [9.99997127e-01],\n",
|
1759 |
+
" [9.99997469e-01],\n",
|
1760 |
+
" [9.99997770e-01],\n",
|
1761 |
+
" [9.99998036e-01],\n",
|
1762 |
+
" [9.99998269e-01],\n",
|
1763 |
+
" [9.99998475e-01],\n",
|
1764 |
+
" [9.99998657e-01],\n",
|
1765 |
+
" [9.99998817e-01],\n",
|
1766 |
+
" [9.99998957e-01],\n",
|
1767 |
+
" [9.99999082e-01],\n",
|
1768 |
+
" [9.99999191e-01],\n",
|
1769 |
+
" [9.99999287e-01],\n",
|
1770 |
+
" [9.99999372e-01],\n",
|
1771 |
+
" [9.99999447e-01],\n",
|
1772 |
+
" [9.99999513e-01],\n",
|
1773 |
+
" [9.99999571e-01],\n",
|
1774 |
+
" [9.99999622e-01],\n",
|
1775 |
+
" [9.99999667e-01],\n",
|
1776 |
+
" [9.99999706e-01],\n",
|
1777 |
+
" [9.99999741e-01],\n",
|
1778 |
+
" [9.99999772e-01],\n",
|
1779 |
+
" [9.99999799e-01],\n",
|
1780 |
+
" [9.99999823e-01],\n",
|
1781 |
+
" [9.99999844e-01],\n",
|
1782 |
+
" [9.99999863e-01],\n",
|
1783 |
+
" [9.99999879e-01],\n",
|
1784 |
+
" [9.99999893e-01],\n",
|
1785 |
+
" [9.99999906e-01],\n",
|
1786 |
+
" [9.99999917e-01],\n",
|
1787 |
+
" [9.99999927e-01]])"
|
1788 |
+
]
|
1789 |
+
},
|
1790 |
+
"execution_count": 15,
|
1791 |
+
"metadata": {},
|
1792 |
+
"output_type": "execute_result"
|
1793 |
+
}
|
1794 |
+
],
|
1795 |
+
"source": [
|
1796 |
+
"Y_predicted"
|
1797 |
+
]
|
1798 |
+
},
|
1799 |
+
{
|
1800 |
+
"cell_type": "code",
|
1801 |
+
"execution_count": 16,
|
1802 |
+
"metadata": {},
|
1803 |
"outputs": [],
|
1804 |
"source": [
|
1805 |
"X_gentoo = df_dummy[df_dummy[\"species_Gentoo\"] == 1][\"flipper_length_mm\"].values\n",
|
|
|
1808 |
},
|
1809 |
{
|
1810 |
"cell_type": "code",
|
1811 |
+
"execution_count": 17,
|
1812 |
"metadata": {},
|
1813 |
"outputs": [
|
1814 |
{
|
|
|
1830 |
},
|
1831 |
{
|
1832 |
"cell_type": "code",
|
1833 |
+
"execution_count": 18,
|
1834 |
"metadata": {},
|
1835 |
"outputs": [
|
1836 |
{
|